KOPS - Das Institutionelle Repositorium der Universität Konstanz

Polymer Controlled Crystallization : Shape and Size Control of Advanced Inorganic Nanostructured Materials-1D, 2D Nanocrystals and More Complex Superstructures

Polymer Controlled Crystallization : Shape and Size Control of Advanced Inorganic Nanostructured Materials-1D, 2D Nanocrystals and More Complex Superstructures

Zitieren

Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

YU, Shu-Hong, Helmut CÖLFEN, 2003. Polymer Controlled Crystallization : Shape and Size Control of Advanced Inorganic Nanostructured Materials-1D, 2D Nanocrystals and More Complex Superstructures. In: LIZ-MARZÁN, Luis M., ed. and others. Low-Dimensional Systems : Theory, Preparation, and Some Applications. Dordrecht:Springer, pp. 87-105. ISBN 978-1-4020-1169-6. Available under: doi: 10.1007/978-94-010-0143-4_8

@incollection{Yu2003Polym-40529, title={Polymer Controlled Crystallization : Shape and Size Control of Advanced Inorganic Nanostructured Materials-1D, 2D Nanocrystals and More Complex Superstructures}, year={2003}, doi={10.1007/978-94-010-0143-4_8}, number={91}, isbn={978-1-4020-1169-6}, address={Dordrecht}, publisher={Springer}, series={NATO science series : Sub-series 2, Mathematics, physics and chemistry}, booktitle={Low-Dimensional Systems : Theory, Preparation, and Some Applications}, pages={87--105}, editor={Liz-Marzán, Luis M.}, author={Yu, Shu-Hong and Cölfen, Helmut} }

Polymer Controlled Crystallization : Shape and Size Control of Advanced Inorganic Nanostructured Materials-1D, 2D Nanocrystals and More Complex Superstructures 2017-11-08T13:58:33Z 2017-11-08T13:58:33Z Yu, Shu-Hong Cölfen, Helmut 2003 Yu, Shu-Hong Cölfen, Helmut Recently, exploration of mild environmentally friendly strategies for controlled fabrication of advanced inorganic materials with controlled shape, size, dimensionality, and structure has been heightened. Shape control and exploration of novel methods for self-assembling or surface-assembling molecules or colloids to generate materials with controlled morphologies and unique properties are among the hottest research subjects.<br />In this chapter, the latest advances in the polymer-controlled crystallization of various technically important inorganic crystals are summarized. The so-called double-hydrophilic block copolymers (DHBCs), which contain both a binding block and a solvating block for inorganic surfaces, are demonstrated to exert significant influence on the crystallization and morphology of various inorganic crystals such as BaCrO<sub>4</sub>, CaCO<sub>3</sub>, BaCO<sub>3</sub>, CdWO<sub>4</sub>, BaSO<sub>4</sub>, ZnO, CdS under near natural conditions.<br />Cone-like bundles of BaCrO<sub>4</sub> nanofibers with diameter 10–20 nm and lengths up to 150 μm can be easily produced at room temperature in the presence of a phosphonated copolymer. A self-limited growth mechanism was proposed for the explanation of the high similarity of the BaCrO<sub>4</sub> nanofiber bundles. A controlled growth of CaCO<sub>3</sub>, and BaCO<sub>3</sub> crystals with different sizes and surface strucutures was also addressed. In addition, a fine tuning of crystal morphology and crystal superstructures of ID and 2D very thin CdWO<sub>4</sub> nanorods/nanobelts, and elongated nanosheets can be realized by a very simple aqueous route in the presence of block copolymers.<br />The results demonstrate that the integration of using DHBCs with taking advantages over the experimental conditions, such as the crystallization sites, temperature, pH value, reactant concentration, will provide very promising routes for controlling the shape, sizes, and microstructure of the hierachical inorganic crystals from nanoscale to macroscopic scale via a simple mineralization process. The materials with controllable shape, size, structure, and dimensionality are expected to find potential applications in the field of advanced materials. eng

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto