KOPS - Das Institutionelle Repositorium der Universität Konstanz

Interpretation of Dimensionally-reduced Crime Data : A Study with Untrained Domain Experts

Interpretation of Dimensionally-reduced Crime Data : A Study with Untrained Domain Experts

Zitieren

Dateien zu dieser Ressource

Prüfsumme: MD5:c1696c29c562f1c0b8fe6f146d2594f4

JÄCKLE, Dominik, Florian STOFFEL, Sebastian MITTELSTÄDT, Daniel A. KEIM, Harald REITERER, 2017. Interpretation of Dimensionally-reduced Crime Data : A Study with Untrained Domain Experts. 12th International Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2017). Porto, Portugal, 27. Feb 2017 - 1. Mär 2017. In: Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications. 12th International Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2017). Porto, Portugal, 27. Feb 2017 - 1. Mär 2017. Setúbal, Portugal:SCITEPRESS, pp. 164-175. ISBN 9789897582288. Available under: doi: 10.5220/0006265101640175

@inproceedings{Jackle2017-02-27Inter-39720, title={Interpretation of Dimensionally-reduced Crime Data : A Study with Untrained Domain Experts}, year={2017}, doi={10.5220/0006265101640175}, isbn={9789897582288}, address={Setúbal, Portugal}, publisher={SCITEPRESS}, booktitle={Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications}, pages={164--175}, author={Jäckle, Dominik and Stoffel, Florian and Mittelstädt, Sebastian and Keim, Daniel A. and Reiterer, Harald} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/39720"> <dc:creator>Jäckle, Dominik</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-08-01T11:52:46Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-08-01T11:52:46Z</dc:date> <dcterms:rights rdf:resource="http://nbn-resolving.de/urn:nbn:de:bsz:352-20150914100631302-4485392-8"/> <dc:creator>Mittelstädt, Sebastian</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:contributor>Mittelstädt, Sebastian</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:contributor>Reiterer, Harald</dc:contributor> <dc:contributor>Stoffel, Florian</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/39720/1/Jaeckle_0-419085.pdf"/> <dc:creator>Stoffel, Florian</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Jäckle, Dominik</dc:contributor> <dc:creator>Keim, Daniel A.</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/39720"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dcterms:title>Interpretation of Dimensionally-reduced Crime Data : A Study with Untrained Domain Experts</dcterms:title> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:creator>Reiterer, Harald</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/39720/1/Jaeckle_0-419085.pdf"/> <dcterms:abstract xml:lang="eng">Dimensionality reduction (DR) techniques aim to reduce the amount of considered dimensions, yet preserving as much information as possible. According to many visualization researchers, DR results lack interpretability, in particular for domain experts not familiar with machine learning or advanced statistics. Thus, interactive visual methods have been extensively researched for their ability to improve transparency and ease the interpretation of results. However, these methods have primarily been evaluated using case studies and interviews with experts trained in DR. In this paper, we describe a phenomenological analysis investigating if researchers with no or only limited training in machine learning or advanced statistics can interpret the depiction of a data projection and what their incentives are during interaction. We, therefore, developed an interactive system for DR, which unifies mixed data types as they appear in real-world data. Based on this system, we provided data analys ts of a Law Enforcement Agency (LEA) with dimensionally-reduced crime data and let them explore and analyze domain-relevant tasks without providing further conceptual information. Results of our study reveal that these untrained experts encounter few difficulties in interpreting the results and drawing conclusions given a domain relevant use case and their experience. We further discuss the results based on collected informal feedback and observations.</dcterms:abstract> <dcterms:issued>2017-02-27</dcterms:issued> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>

Dateiabrufe seit 01.08.2017 (Informationen über die Zugriffsstatistik)

Jaeckle_0-419085.pdf 2

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto