KOPS - Das Institutionelle Repositorium der Universität Konstanz

What you see is what you can change : Human-centered machine learning by interactive visualization

What you see is what you can change : Human-centered machine learning by interactive visualization

Zitieren

Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

SACHA, Dominik, Michael SEDLMAIR, Leishi ZHANG, John A. LEE, Jaakko PELTONEN, Daniel WEISKOPF, Stephen C. NORTH, Daniel A. KEIM, 2017. What you see is what you can change : Human-centered machine learning by interactive visualization. In: Neurocomputing. ISSN 0925-2312. eISSN 1872-8286

@article{Sacha2017-04chang-39719, title={What you see is what you can change : Human-centered machine learning by interactive visualization}, year={2017}, doi={10.1016/j.neucom.2017.01.105}, issn={0925-2312}, journal={Neurocomputing}, author={Sacha, Dominik and Sedlmair, Michael and Zhang, Leishi and Lee, John A. and Peltonen, Jaakko and Weiskopf, Daniel and North, Stephen C. and Keim, Daniel A.} }

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/39719"> <dc:creator>Zhang, Leishi</dc:creator> <dc:creator>North, Stephen C.</dc:creator> <dc:creator>Lee, John A.</dc:creator> <dc:contributor>Lee, John A.</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-08-01T11:34:12Z</dc:date> <dc:contributor>Sedlmair, Michael</dc:contributor> <dc:contributor>Sacha, Dominik</dc:contributor> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-08-01T11:34:12Z</dcterms:available> <dc:contributor>Peltonen, Jaakko</dc:contributor> <dcterms:title>What you see is what you can change : Human-centered machine learning by interactive visualization</dcterms:title> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:creator>Sacha, Dominik</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/39719"/> <dc:contributor>Zhang, Leishi</dc:contributor> <dc:contributor>Weiskopf, Daniel</dc:contributor> <dc:creator>Weiskopf, Daniel</dc:creator> <dc:creator>Peltonen, Jaakko</dc:creator> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">Visual analytics (VA) systems help data analysts solve complex problems interactively, by integrating automated data analysis and mining, such as machine learning (ML) based methods, with interactive visualizations. We propose a conceptual framework that models human interactions with ML components in the VA process, and that puts the central relationship between automated algorithms and interactive visualizations into sharp focus. The framework is illustrated with several examples and we further elaborate on the interactive ML process by identifying key scenarios where ML methods are combined with human feedback through interactive visualization. We derive five open research challenges at the intersection of ML and visualization research, whose solution should lead to more effective data analysis.</dcterms:abstract> <dc:creator>Sedlmair, Michael</dc:creator> <dcterms:issued>2017-04</dcterms:issued> <dc:contributor>North, Stephen C.</dc:contributor> </rdf:Description> </rdf:RDF>

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto