Blind Image Quality Assessment Through Wakeby Statistics Model

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

JENADELEH, Mohsen, Mohsen Ebrahimi MOGHADDAM, 2015. Blind Image Quality Assessment Through Wakeby Statistics Model. International Conference on Image Analysis and Recognition (ICIAR) 2015. Niagara Falls, Jul 22, 2014 - Jul 24, 2014. In: KAMEL, Mohamed, ed., Aurélio CAMPILHO, ed.. Image Analysis and Recognition. Cham:Springer, pp. 14-21. ISBN 978-3-319-20800-8. Available under: doi: 10.1007/978-3-319-20801-5_2

@inproceedings{Jenadeleh2015-07-04Blind-39651, title={Blind Image Quality Assessment Through Wakeby Statistics Model}, year={2015}, doi={10.1007/978-3-319-20801-5_2}, number={9164}, isbn={978-3-319-20800-8}, address={Cham}, publisher={Springer}, series={Lecture Notes in Computer Science}, booktitle={Image Analysis and Recognition}, pages={14--21}, editor={Kamel, Mohamed and Campilho, Aurélio}, author={Jenadeleh, Mohsen and Moghaddam, Mohsen Ebrahimi} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <bibo:uri rdf:resource=""/> <dc:date rdf:datatype="">2017-07-25T08:53:20Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="">2017-07-25T08:53:20Z</dcterms:available> <dc:creator>Jenadeleh, Mohsen</dc:creator> <dc:contributor>Moghaddam, Mohsen Ebrahimi</dc:contributor> <dcterms:title>Blind Image Quality Assessment Through Wakeby Statistics Model</dcterms:title> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource=""/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:creator>Moghaddam, Mohsen Ebrahimi</dc:creator> <dcterms:issued>2015-07-04</dcterms:issued> <dc:contributor>Jenadeleh, Mohsen</dc:contributor> <dcterms:abstract xml:lang="eng">In this paper, a new universal blind image quality assessment algorithm is proposed that works in presence of various distortions. The proposed algorithm uses natural scene statistics in spatial domain for generating Wakeby distribution statistical model to extract quality aware features. The features are fed to an SVM (support vector machine) regression model to predict quality score of input image without any information about the distortions type or reference image. Experimental results show that the image quality score obtained by the proposed method has higher correlation with respect to human perceptual opinions and it’s superior in some distortions comparing to some full-reference and other blind image quality methods.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource=""/> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


My Account