KOPS - The Institutional Repository of the University of Konstanz

Determinantal representations of hyperbolic curves via polynomial homotopy continuation

Determinantal representations of hyperbolic curves via polynomial homotopy continuation

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

LEYKIN, Anton, Daniel PLAUMANN, 2017. Determinantal representations of hyperbolic curves via polynomial homotopy continuation. In: Mathematics of Computation. 86(308), pp. 2877-2888. ISSN 0025-5718. eISSN 1088-6842. Available under: doi: 10.1090/mcom/3194

@article{Leykin2017Deter-39627, title={Determinantal representations of hyperbolic curves via polynomial homotopy continuation}, year={2017}, doi={10.1090/mcom/3194}, number={308}, volume={86}, issn={0025-5718}, journal={Mathematics of Computation}, pages={2877--2888}, author={Leykin, Anton and Plaumann, Daniel} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/39627"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Leykin, Anton</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:contributor>Plaumann, Daniel</dc:contributor> <dc:creator>Plaumann, Daniel</dc:creator> <dc:language>eng</dc:language> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/39627"/> <dc:creator>Leykin, Anton</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:abstract xml:lang="eng">A smooth curve of degree $ d$ in the real projective plane is hyperbolic if its ovals are maximally nested, i.e., its real points contain $ \lfloor \frac d2\rfloor $ nested ovals. By the Helton-Vinnikov theorem, any such curve admits a definite symmetric determinantal representation. We use polynomial homotopy continuation to compute such representations numerically. Our method works by lifting paths from the space of hyperbolic polynomials to a branched cover in the space of pairs of symmetric matrices.</dcterms:abstract> <dcterms:title>Determinantal representations of hyperbolic curves via polynomial homotopy continuation</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-07-19T09:31:06Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-07-19T09:31:06Z</dcterms:available> <dcterms:issued>2017</dcterms:issued> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account