Functional Prioritization and Hydrogel Regulation Phenomena Created by a Combinatorial Pearl-Associated Two-Protein Biomineralization Model System

No Thumbnail Available
Files
There are no files associated with this item.
Date
2017
Authors
Jain, Gaurav
Pendola, Martin
Juan Colas, Jose
Johnson, Steven
Evans, John Spencer
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
oops
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published
Published in
Biochemistry ; 56 (2017), 28. - pp. 3607-3618. - ISSN 0006-2960. - eISSN 1520-4995
Abstract
In the nacre or aragonitic layer of an oyster pearl, there exists a 12-member proteome that regulates both the early stages of nucleation and nanoscale-to-mesoscale assembly of nacre tablets and calcitic crystals from mineral nanoparticle precursors. Several approaches to understanding protein-associated mechanisms of pearl nacre formation have been developed, yet we still lack insight into how protein ensembles or proteomes manage nucleation and crystal growth. To provide additional insights, we have created a proportionally defined combinatorial model consisting of two pearl nacre-associated proteins, PFMG1 and PFMG2 (shell oyster pearl nacre, Pinctada fucata) whose individual in vitro mineralization functionalities are distinct from one another. Using scanning electron microscopy, atomic force microscopy, Ca(II) potentiometric titrations, and quartz crystal microbalance with dissipation monitoring quantitative analyses, we find that at 1:1 molar ratios, rPFMG2 and rPFMG1 co-aggregate in specific molecular ratios to form hybrid hydrogels that affect both the early and later stages of in vitro calcium carbonate nucleation. Within these hybrid hydrogels, rPFMG2 plays a role in defining protein co-aggregation and hydrogel dimension, whereas rPFMG1 defines participation in nonclassical nucleation processes; both proteins exhibit synergy with regard to surface and subsurface modifications to existing crystals. The interactions between both proteins are enhanced by Ca(II) ions and may involve Ca(II)-induced conformational events within the EF-hand rPFMG1 protein, as well as putative interactions between the EF-hand domain of rPFMG1 and the calponin-like domain of rPFMG2. Thus, the pearl-associated PFMG1 and PFMG2 proteins interact and exhibit mineralization functionalities in specific ways, which may be relevant for pearl formation.
Summary in another language
Subject (DDC)
540 Chemistry
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690JAIN, Gaurav, Martin PENDOLA, Yu-Chieh HUANG, Jose JUAN COLAS, Denis GEBAUER, Steven JOHNSON, John Spencer EVANS, 2017. Functional Prioritization and Hydrogel Regulation Phenomena Created by a Combinatorial Pearl-Associated Two-Protein Biomineralization Model System. In: Biochemistry. 56(28), pp. 3607-3618. ISSN 0006-2960. eISSN 1520-4995. Available under: doi: 10.1021/acs.biochem.7b00313
BibTex
@article{Jain2017-07-18Funct-39620,
  year={2017},
  doi={10.1021/acs.biochem.7b00313},
  title={Functional Prioritization and Hydrogel Regulation Phenomena Created by a Combinatorial Pearl-Associated Two-Protein Biomineralization Model System},
  number={28},
  volume={56},
  issn={0006-2960},
  journal={Biochemistry},
  pages={3607--3618},
  author={Jain, Gaurav and Pendola, Martin and Huang, Yu-Chieh and Juan Colas, Jose and Gebauer, Denis and Johnson, Steven and Evans, John Spencer}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39620">
    <dc:contributor>Juan Colas, Jose</dc:contributor>
    <dc:creator>Pendola, Martin</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-07-19T08:30:29Z</dc:date>
    <dcterms:abstract xml:lang="eng">In the nacre or aragonitic layer of an oyster pearl, there exists a 12-member proteome that regulates both the early stages of nucleation and nanoscale-to-mesoscale assembly of nacre tablets and calcitic crystals from mineral nanoparticle precursors. Several approaches to understanding protein-associated mechanisms of pearl nacre formation have been developed, yet we still lack insight into how protein ensembles or proteomes manage nucleation and crystal growth. To provide additional insights, we have created a proportionally defined combinatorial model consisting of two pearl nacre-associated proteins, PFMG1 and PFMG2 (shell oyster pearl nacre, Pinctada fucata) whose individual in vitro mineralization functionalities are distinct from one another. Using scanning electron microscopy, atomic force microscopy, Ca(II) potentiometric titrations, and quartz crystal microbalance with dissipation monitoring quantitative analyses, we find that at 1:1 molar ratios, rPFMG2 and rPFMG1 co-aggregate in specific molecular ratios to form hybrid hydrogels that affect both the early and later stages of in vitro calcium carbonate nucleation. Within these hybrid hydrogels, rPFMG2 plays a role in defining protein co-aggregation and hydrogel dimension, whereas rPFMG1 defines participation in nonclassical nucleation processes; both proteins exhibit synergy with regard to surface and subsurface modifications to existing crystals. The interactions between both proteins are enhanced by Ca(II) ions and may involve Ca(II)-induced conformational events within the EF-hand rPFMG1 protein, as well as putative interactions between the EF-hand domain of rPFMG1 and the calponin-like domain of rPFMG2. Thus, the pearl-associated PFMG1 and PFMG2 proteins interact and exhibit mineralization functionalities in specific ways, which may be relevant for pearl formation.</dcterms:abstract>
    <dc:creator>Jain, Gaurav</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/39620"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dc:creator>Evans, John Spencer</dc:creator>
    <dc:contributor>Huang, Yu-Chieh</dc:contributor>
    <dc:creator>Juan Colas, Jose</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dc:creator>Johnson, Steven</dc:creator>
    <dc:creator>Huang, Yu-Chieh</dc:creator>
    <dc:contributor>Johnson, Steven</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dcterms:title>Functional Prioritization and Hydrogel Regulation Phenomena Created by a Combinatorial Pearl-Associated Two-Protein Biomineralization Model System</dcterms:title>
    <dc:contributor>Pendola, Martin</dc:contributor>
    <dc:contributor>Evans, John Spencer</dc:contributor>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dcterms:issued>2017-07-18</dcterms:issued>
    <dc:contributor>Jain, Gaurav</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Gebauer, Denis</dc:creator>
    <dc:contributor>Gebauer, Denis</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-07-19T08:30:29Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed