Sum of squares length of real forms

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

SCHEIDERER, Claus, 2017. Sum of squares length of real forms. In: Mathematische Zeitschrift. 286(1-2), pp. 559-570. ISSN 0025-5874. eISSN 1432-1823. Available under: doi: 10.1007/s00209-016-1773-z

@article{Scheiderer2017squar-39241, title={Sum of squares length of real forms}, year={2017}, doi={10.1007/s00209-016-1773-z}, number={1-2}, volume={286}, issn={0025-5874}, journal={Mathematische Zeitschrift}, pages={559--570}, author={Scheiderer, Claus} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dc:date rdf:datatype="">2017-06-13T09:14:58Z</dc:date> <dc:contributor>Scheiderer, Claus</dc:contributor> <dcterms:available rdf:datatype="">2017-06-13T09:14:58Z</dcterms:available> <dcterms:isPartOf rdf:resource=""/> <dcterms:abstract xml:lang="eng">For n,d≥1 let p(n, 2d) denote the smallest number p such that every sum of squares of degree d forms in R[x1,…,xn] is a sum of p squares. We establish lower bounds for p(n, 2d) that are considerably stronger than the bounds known so far. Combined with known upper bounds they give p(3,2d)∈{d+1,d+2} in the ternary case. Assuming a conjecture of Iarrobino–Kanev on dimensions of tangent spaces to catalecticant varieties, we show that p(n,2d)∼const⋅d(n−1)/2 for d→∞ and all n≥3. For ternary sextics and quaternary quartics we determine the exact value of the invariant, showing p(3,6)=4 and p(4,4)=5.</dcterms:abstract> <dc:language>eng</dc:language> <bibo:uri rdf:resource=""/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:issued>2017</dcterms:issued> <dcterms:title>Sum of squares length of real forms</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Scheiderer, Claus</dc:creator> <dspace:isPartOfCollection rdf:resource=""/> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


My Account