Nonlinear thermoelastic plate equations : global existence and decay rates for the Cauchy problem

Lade...
Vorschaubild
Dateien
Racke_0-403312.pdf
Racke_0-403312.pdfGröße: 219.07 KBDownloads: 290
Datum
2017
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published
Erschienen in
Zusammenfassung

We consider the Cauchy problem in Rn for some fully nonlinear thermoelastic Kirchhoff type plate equations where heat conduction is modeled by either the Cattaneo law or by the Fourier law. Additionally, we take into account possible inertial effects. Considering nonlinearities which are of fourth-order in the space variable, we deal with a fully nonlinear system which triggers difficulties typical for nonlinear Schrödinger equations. The different models considered are systems of mixed type comparable to Schrödinger-parabolic or Schrödinger-hyperbolic systems. The main task consists in proving sophisticated a priori estimates with the achievement of obtaining the global existence of solutions for small data, neither known nor expected for the Cauchy problem in pure plate theory nor available before for the coupled system under investigation, where only special cases (bounded domains with analytic semigroup setting, or the Cauchy problem with semilinear nonlinearities) had been treated before.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690RACKE, Reinhard, Yoshihiro UEDA, 2017. Nonlinear thermoelastic plate equations : global existence and decay rates for the Cauchy problem
BibTex
@techreport{Racke2017Nonli-38477,
  year={2017},
  series={Konstanzer Schriften in Mathematik},
  title={Nonlinear thermoelastic plate equations : global existence and decay rates for the Cauchy problem},
  number={360},
  author={Racke, Reinhard and Ueda, Yoshihiro}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/38477">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/38477/5/Racke_0-403312.pdf"/>
    <dcterms:title>Nonlinear thermoelastic plate equations : global existence and decay rates for the Cauchy problem</dcterms:title>
    <dc:contributor>Ueda, Yoshihiro</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-04-11T15:01:52Z</dc:date>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">We consider the Cauchy problem in R&lt;sup&gt;n&lt;/sup&gt; for some fully nonlinear thermoelastic Kirchhoff type plate equations where heat conduction is modeled by either the Cattaneo law or by the Fourier law. Additionally, we take into account possible inertial effects. Considering nonlinearities which are of fourth-order in the space variable, we deal with a fully nonlinear system which triggers difficulties typical for nonlinear Schrödinger equations. The different models considered are systems of mixed type comparable to  Schrödinger-parabolic or Schrödinger-hyperbolic systems. The main task consists in proving sophisticated a priori estimates with the achievement of obtaining the global existence of solutions for small data, neither known nor expected for the Cauchy problem in pure plate theory nor available before for the coupled system under investigation, where only special cases (bounded domains with analytic semigroup setting, or the Cauchy problem with semilinear nonlinearities) had been treated before.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Racke, Reinhard</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/38477"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/38477/5/Racke_0-403312.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Ueda, Yoshihiro</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-04-11T15:01:52Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:issued>2017</dcterms:issued>
    <dc:contributor>Racke, Reinhard</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet