What Sparse Light Field Coding Reveals about Scene Structure

No Thumbnail Available
Files
There are no files associated with this item.
Date
2016
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
oops
EU project number
336978
Project
LIA - Light Field Imaging and Analysis
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Contribution to a conference collection
Publication status
Published
Published in
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). - Piscataway, NJ : IEEE, 2016. - pp. 3262-3270. - ISBN 978-1-4673-8851-1
Abstract
In this paper, we propose a novel method for depth estimation in light fields which employs a specifically designed sparse decomposition to leverage the depth-orientation relationship on its epipolar plane images. The proposed method learns the structure of the central view and uses this information to construct a light field dictionary for which groups of atoms correspond to unique disparities. This dictionary is then used to code a sparse representation of the light field. Analyzing the coefficients of this representation with respect to the disparities of their corresponding atoms yields an accurate and robust estimate of depth. In addition, if the light field has multiple depth layers, such as for reflective or transparent surfaces, statistical analysis of the coefficients can be employed to infer the respective depth of the superimposed layers.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Conference
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun 27, 2016 - Jun 30, 2016, Las Vegas, NV, USA
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690JOHANNSEN, Ole, Antonin SULC, Bastian GOLDLÜCKE, 2016. What Sparse Light Field Coding Reveals about Scene Structure. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA, Jun 27, 2016 - Jun 30, 2016. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ:IEEE, pp. 3262-3270. ISBN 978-1-4673-8851-1. Available under: doi: 10.1109/CVPR.2016.355
BibTex
@inproceedings{Johannsen2016Spars-38202,
  year={2016},
  doi={10.1109/CVPR.2016.355},
  title={What Sparse Light Field Coding Reveals about Scene Structure},
  isbn={978-1-4673-8851-1},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  pages={3262--3270},
  author={Johannsen, Ole and Sulc, Antonin and Goldlücke, Bastian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/38202">
    <dc:creator>Goldlücke, Bastian</dc:creator>
    <dcterms:abstract xml:lang="eng">In this paper, we propose a novel method for depth estimation in light fields which employs a specifically designed sparse decomposition to leverage the depth-orientation relationship on its epipolar plane images. The proposed method learns the structure of the central view and uses this information to construct a light field dictionary for which groups of atoms correspond to unique disparities. This dictionary is then used to code a sparse representation of the light field. Analyzing the coefficients of this representation with respect to the disparities of their corresponding atoms yields an accurate and robust estimate of depth. In addition, if the light field has multiple depth layers, such as for reflective or transparent surfaces, statistical analysis of the coefficients can be employed to infer the respective depth of the superimposed layers.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2016</dcterms:issued>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-03-30T06:26:05Z</dc:date>
    <dc:contributor>Sulc, Antonin</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Goldlücke, Bastian</dc:contributor>
    <dc:creator>Sulc, Antonin</dc:creator>
    <dcterms:title>What Sparse Light Field Coding Reveals about Scene Structure</dcterms:title>
    <dc:contributor>Johannsen, Ole</dc:contributor>
    <dc:creator>Johannsen, Ole</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/38202"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-03-30T06:26:05Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed