Survey and Experimental Analysis of Event Detection Techniques for Twitter

Zitieren

Dateien zu dieser Ressource

Prüfsumme: MD5:b06c2c7d5d8d5cf33e397de630b016e8

WEILER, Andreas, Michael GROSSNIKLAUS, Marc H. SCHOLL, 2017. Survey and Experimental Analysis of Event Detection Techniques for Twitter. In: The Computer Journal. 60(3), pp. 329-346. ISSN 0010-4620. eISSN 1460-2067. Available under: doi: 10.1093/comjnl/bxw056

@article{Weiler2017Surve-37473, title={Survey and Experimental Analysis of Event Detection Techniques for Twitter}, year={2017}, doi={10.1093/comjnl/bxw056}, number={3}, volume={60}, issn={0010-4620}, journal={The Computer Journal}, pages={329--346}, author={Weiler, Andreas and Grossniklaus, Michael and Scholl, Marc H.} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/37473"> <dcterms:title>Survey and Experimental Analysis of Event Detection Techniques for Twitter</dcterms:title> <dcterms:abstract xml:lang="eng">Twitter's popularity as a source of up-to-date news and information is constantly increasing. In response to this trend, numerous event detection techniques have been proposed to cope with the rate and volume of Twitter data streams. Although most of these works conduct some evaluation of the proposed technique, a comparative study is often omitted. In this paper, we present a survey and experimental analysis of state-of-the-art event detection techniques for Twitter data streams. In order to conduct this study, we define a series of measures to support the quantitative and qualitative comparison. We demonstrate the effectiveness of these measures by applying them to event detection techniques as well as to baseline approaches using real-world Twitter streaming data.</dcterms:abstract> <dc:contributor>Scholl, Marc H.</dc:contributor> <dc:contributor>Grossniklaus, Michael</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:contributor>Weiler, Andreas</dc:contributor> <dc:creator>Scholl, Marc H.</dc:creator> <dc:creator>Grossniklaus, Michael</dc:creator> <dcterms:rights rdf:resource="http://nbn-resolving.de/urn:nbn:de:bsz:352-20150914100631302-4485392-8"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/37473"/> <dcterms:issued>2017</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Weiler, Andreas</dc:creator> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-16T08:13:47Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-16T08:13:47Z</dc:date> </rdf:Description> </rdf:RDF>

Dateiabrufe seit 16.02.2017 (Informationen über die Zugriffsstatistik)

Weiler_0-370382.pdf 1

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto