Type of Publication: | Contribution to a conference collection |
Publication status: | Published |
URI (citable link): | http://nbn-resolving.de/urn:nbn:de:bsz:352-2-zuz8656k1ia99 |
Author: | Shen, Minmin; Duan, Le; Deussen, Oliver |
Year of publication: | 2016 |
Conference: | Computer Vision -- ECCV 2016 Workshops, Oct 8, 2016 - Oct 10, 2016, Amsterdam, The Netherlands |
Published in: | Computer Vision -- ECCV 2016 Workshops : Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part I / Hua, Gang; Jégou, Hervé (ed.). - Cham : Springer International Publishing, 2016. - (Lecture Notes in Computer Science ; 9913). - pp. 217-230. - ISBN 978-3-319-46603-3 |
DOI (citable link): | https://dx.doi.org/10.1007/978-3-319-46604-0_16 |
Summary: |
We propose a new method for detailed insect pose estimation, which aims to detect landmarks as the tips of an insect’s antennae and mouthparts from a single image. In this paper, we formulate this problem as inferring a mapping from the appearance of an insect to its corresponding pose. We present a unified framework that jointly learns a mapping from the local appearance (image patch) and the global anatomical structure (silhouette) of an insect to its corresponding pose. Our main contribution is that we propose a data driven approach to learn the geometric prior for modeling various insect appearance. Combined with the discriminative power of Random Forests (RF) model, our method achieves high precision of landmark localization. This approach is evaluated using three challenging datasets of insects which we make publicly available. Experiments show that it achieves improvement over the traditional RF regression method, and comparably precision to human annotators.
|
Subject (DDC): | 004 Computer Science |
Comment on publication: | Die Konferenz fand vom 8.-10. Oktober und vom 15.-16. Oktober 2016 statt. |
Link to License: | In Copyright |
Bibliography of Konstanz: | Yes |
SHEN, Minmin, Le DUAN, Oliver DEUSSEN, 2016. Single-Image Insect Pose Estimation by Graph Based Geometric Models and Random Forests. Computer Vision -- ECCV 2016 Workshops. Amsterdam, The Netherlands, Oct 8, 2016 - Oct 10, 2016. In: HUA, Gang, ed., Hervé JÉGOU, ed.. Computer Vision -- ECCV 2016 Workshops : Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part I. Cham:Springer International Publishing, pp. 217-230. ISBN 978-3-319-46603-3. Available under: doi: 10.1007/978-3-319-46604-0_16
@inproceedings{Shen2016Singl-37406, title={Single-Image Insect Pose Estimation by Graph Based Geometric Models and Random Forests}, year={2016}, doi={10.1007/978-3-319-46604-0_16}, number={9913}, isbn={978-3-319-46603-3}, address={Cham}, publisher={Springer International Publishing}, series={Lecture Notes in Computer Science}, booktitle={Computer Vision -- ECCV 2016 Workshops : Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part I}, pages={217--230}, editor={Hua, Gang and Jégou, Hervé}, author={Shen, Minmin and Duan, Le and Deussen, Oliver}, note={Die Konferenz fand vom 8.-10. Oktober und vom 15.-16. Oktober 2016 statt.} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/37406"> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/37406/1/Shen_2-zuz8656k1ia99.pdf"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/37406/1/Shen_2-zuz8656k1ia99.pdf"/> <dcterms:title>Single-Image Insect Pose Estimation by Graph Based Geometric Models and Random Forests</dcterms:title> <dc:creator>Deussen, Oliver</dc:creator> <dc:creator>Shen, Minmin</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:rights>terms-of-use</dc:rights> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">We propose a new method for detailed insect pose estimation, which aims to detect landmarks as the tips of an insect’s antennae and mouthparts from a single image. In this paper, we formulate this problem as inferring a mapping from the appearance of an insect to its corresponding pose. We present a unified framework that jointly learns a mapping from the local appearance (image patch) and the global anatomical structure (silhouette) of an insect to its corresponding pose. Our main contribution is that we propose a data driven approach to learn the geometric prior for modeling various insect appearance. Combined with the discriminative power of Random Forests (RF) model, our method achieves high precision of landmark localization. This approach is evaluated using three challenging datasets of insects which we make publicly available. Experiments show that it achieves improvement over the traditional RF regression method, and comparably precision to human annotators.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:issued>2016</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-14T11:08:02Z</dcterms:available> <dc:contributor>Duan, Le</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:contributor>Deussen, Oliver</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/37406"/> <dc:contributor>Shen, Minmin</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-14T11:08:02Z</dc:date> <dc:creator>Duan, Le</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/52"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/52"/> </rdf:Description> </rdf:RDF>
Shen_2-zuz8656k1ia99.pdf | 162 |