KOPS - Das Institutionelle Repositorium der Universität Konstanz

Single-Image Insect Pose Estimation by Graph Based Geometric Models and Random Forests

Single-Image Insect Pose Estimation by Graph Based Geometric Models and Random Forests

Zitieren

Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

SHEN, Minmin, Le DUAN, Oliver DEUSSEN, 2016. Single-Image Insect Pose Estimation by Graph Based Geometric Models and Random Forests. Computer Vision -- ECCV 2016 Workshops. Amsterdam, The Netherlands, 8. Okt 2016 - 10. Okt 2016. In: HUA, Gang, ed., Hervé JÉGOU, ed.. Computer Vision -- ECCV 2016 Workshops : Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part I. Computer Vision -- ECCV 2016 Workshops. Amsterdam, The Netherlands, 8. Okt 2016 - 10. Okt 2016. Cham:Springer International Publishing, pp. 217-230. ISBN 978-3-319-46603-3

@inproceedings{Shen2016Singl-37406, title={Single-Image Insect Pose Estimation by Graph Based Geometric Models and Random Forests}, year={2016}, doi={10.1007/978-3-319-46604-0_16}, number={9913}, isbn={978-3-319-46603-3}, address={Cham}, publisher={Springer International Publishing}, series={Lecture Notes in Computer Science}, booktitle={Computer Vision -- ECCV 2016 Workshops : Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part I}, pages={217--230}, editor={Hua, Gang and Jégou, Hervé}, author={Shen, Minmin and Duan, Le and Deussen, Oliver}, note={Die Konferenz fand vom 8.-10. Oktober und vom 15.-16. Oktober 2016 statt.} }

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/37406"> <dcterms:title>Single-Image Insect Pose Estimation by Graph Based Geometric Models and Random Forests</dcterms:title> <dc:creator>Deussen, Oliver</dc:creator> <dc:creator>Shen, Minmin</dc:creator> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">We propose a new method for detailed insect pose estimation, which aims to detect landmarks as the tips of an insect’s antennae and mouthparts from a single image. In this paper, we formulate this problem as inferring a mapping from the appearance of an insect to its corresponding pose. We present a unified framework that jointly learns a mapping from the local appearance (image patch) and the global anatomical structure (silhouette) of an insect to its corresponding pose. Our main contribution is that we propose a data driven approach to learn the geometric prior for modeling various insect appearance. Combined with the discriminative power of Random Forests (RF) model, our method achieves high precision of landmark localization. This approach is evaluated using three challenging datasets of insects which we make publicly available. Experiments show that it achieves improvement over the traditional RF regression method, and comparably precision to human annotators.</dcterms:abstract> <dcterms:issued>2016</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-14T11:08:02Z</dcterms:available> <dc:contributor>Duan, Le</dc:contributor> <dc:contributor>Deussen, Oliver</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/37406"/> <dc:contributor>Shen, Minmin</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-14T11:08:02Z</dc:date> <dc:creator>Duan, Le</dc:creator> </rdf:Description> </rdf:RDF>

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto