KOPS - Das Institutionelle Repositorium der Universität Konstanz

BigGIS : a continuous refinement approach to master heterogeneity and uncertainty in spatio-temporal big data (vision paper)

BigGIS : a continuous refinement approach to master heterogeneity and uncertainty in spatio-temporal big data (vision paper)

Zitieren

Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

WIENER, Patrick, Manuel STEIN, Daniel SEEBACHER, Julian BRUNS, Matthias FRANK, Viliam SIMKO, Stefan ZANDER, Jens NIMIS, 2016. BigGIS : a continuous refinement approach to master heterogeneity and uncertainty in spatio-temporal big data (vision paper). 24th ACM SIGSPATIAL International Conference. Burlingame, California, 31. Okt 2016 - 3. Nov 2016. In: ALI, Mohamed, ed., Shawn NEWSAM, ed.. GIS '16 : Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems - GIS '16. 24th ACM SIGSPATIAL International Conference. Burlingame, California, 31. Okt 2016 - 3. Nov 2016. New York:ACM Press, 8. ISBN 978-1-4503-4589-7

@inproceedings{Wiener2016BigGI-36921, title={BigGIS : a continuous refinement approach to master heterogeneity and uncertainty in spatio-temporal big data (vision paper)}, year={2016}, doi={10.1145/2996913.2996931}, isbn={978-1-4503-4589-7}, address={New York}, publisher={ACM Press}, booktitle={GIS '16 : Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems - GIS '16}, editor={Ali, Mohamed and Newsam, Shawn}, author={Wiener, Patrick and Stein, Manuel and Seebacher, Daniel and Bruns, Julian and Frank, Matthias and Simko, Viliam and Zander, Stefan and Nimis, Jens}, note={Article Number: 8} }

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/36921"> <dc:contributor>Zander, Stefan</dc:contributor> <dc:creator>Bruns, Julian</dc:creator> <dc:creator>Frank, Matthias</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-01-24T11:43:43Z</dc:date> <dc:creator>Stein, Manuel</dc:creator> <dc:contributor>Simko, Viliam</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-01-24T11:43:43Z</dcterms:available> <dc:contributor>Wiener, Patrick</dc:contributor> <dc:language>eng</dc:language> <dc:creator>Wiener, Patrick</dc:creator> <dc:contributor>Stein, Manuel</dc:contributor> <dc:contributor>Seebacher, Daniel</dc:contributor> <dcterms:abstract xml:lang="eng">Geographic information systems (GIS) are important for decision support based on spatial data. Due to technical and economical progress an ever increasing number of data sources are available leading to a rapidly growing fast and unreliable amount of data that can be beneficial (1) in the approximation of multivariate and causal predictions of future values as well as (2) in robust and proactive decision-making processes. However, today's GIS are not designed for such big data demands and require new methodologies to effectively model uncertainty and generate meaningful knowledge. As a consequence, we introduce BigGIS, a predictive and prescriptive spatio-temporal analytics platform, that symbiotically combines big data analytics, semantic web technologies and visual analytics methodologies. We present a novel continuous refinement model and show future challenges as an intermediate result of a collaborative research project into big data methodologies for spatio-temporal analysis and design for a big data enabled GIS.</dcterms:abstract> <dc:contributor>Nimis, Jens</dc:contributor> <dc:creator>Seebacher, Daniel</dc:creator> <dc:creator>Simko, Viliam</dc:creator> <dc:creator>Zander, Stefan</dc:creator> <dc:contributor>Bruns, Julian</dc:contributor> <dcterms:title>BigGIS : a continuous refinement approach to master heterogeneity and uncertainty in spatio-temporal big data (vision paper)</dcterms:title> <dc:contributor>Frank, Matthias</dc:contributor> <dc:creator>Nimis, Jens</dc:creator> <dcterms:issued>2016</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/36921"/> </rdf:Description> </rdf:RDF>

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto