A Pragmatic Approach to Biases in Visual Data Analysis
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Visual biases and more generally cognitive biases are a part of human life. Often to the frustration of the rational decision makers we aspire to be. Research into these biases has sparked a recent burst in interest, and more and more people are aware of possible pitfalls. In this paper, we argue that the consequences of biases during data analysis have to be considered rather than the occurrences themselves. In applying this, we distinguish between (visual) analysis for exploration and validation. Especially the latter turns out to be hard in some cases, indicated by a qualitative measure we call validation cost. Examples are provided of situations with a high validation cost and the role of visualization is discussed in these cases. For cases with a low validation cost, we argue that biases leading to false positives are far better than trying to avoid biases and ending up with false negatives.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
VERBEIREN, Toni, Ryo SAKAI, Jan AERTS, 2014. A Pragmatic Approach to Biases in Visual Data Analysis. IEEE VIS 2014. Paris, France, 9. Nov. 2014 - 14. Nov. 2014. In: ELLIS, Geoffrey, ed.. DECISIVe : Workshop on Dealing with Cognitive Biases in Visualisations. 2014BibTex
@inproceedings{Verbeiren2014Pragm-33726, year={2014}, title={A Pragmatic Approach to Biases in Visual Data Analysis}, booktitle={DECISIVe : Workshop on Dealing with Cognitive Biases in Visualisations}, editor={Ellis, Geoffrey}, author={Verbeiren, Toni and Sakai, Ryo and Aerts, Jan} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/33726"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">Visual biases and more generally cognitive biases are a part of human life. Often to the frustration of the rational decision makers we aspire to be. Research into these biases has sparked a recent burst in interest, and more and more people are aware of possible pitfalls. In this paper, we argue that the consequences of biases during data analysis have to be considered rather than the occurrences themselves. In applying this, we distinguish between (visual) analysis for exploration and validation. Especially the latter turns out to be hard in some cases, indicated by a qualitative measure we call validation cost. Examples are provided of situations with a high validation cost and the role of visualization is discussed in these cases. For cases with a low validation cost, we argue that biases leading to false positives are far better than trying to avoid biases and ending up with false negatives.</dcterms:abstract> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/33726"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/33726/3/Verbeiren_0-329490.pdf"/> <dc:creator>Sakai, Ryo</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Aerts, Jan</dc:contributor> <dcterms:title>A Pragmatic Approach to Biases in Visual Data Analysis</dcterms:title> <dc:creator>Verbeiren, Toni</dc:creator> <dc:contributor>Sakai, Ryo</dc:contributor> <dc:contributor>Verbeiren, Toni</dc:contributor> <dcterms:issued>2014</dcterms:issued> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/33726/3/Verbeiren_0-329490.pdf"/> <dc:rights>terms-of-use</dc:rights> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-04-28T11:44:12Z</dcterms:available> <dc:creator>Aerts, Jan</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-04-28T11:44:12Z</dc:date> </rdf:Description> </rdf:RDF>