Algebraic Characterization of Rings of Continuous p-Adic Valued Functions
Algebraic Characterization of Rings of Continuous p-Adic Valued Functions
No Thumbnail Available
Files
There are no files associated with this item.
Date
2016
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
International patent number
Link to the license
oops
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published
Published in
Communications in Algebra ; 44 (2016), 2. - pp. 486-499. - ISSN 0092-7872. - eISSN 1532-4125
Abstract
The aim of this article is to characterize among the class of all commutative rings containing ℚ the rings C(X, ℚp) of all continuous ℚp-valued functions on a compact space X. The characterization is similar to that of M. Stone from 1940 (see [9]) for the case of ℝ-valued functions. The Characterization Theorem 4.6 is a consequence of our main result, the p-adic Representation Theorem 4.5.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Banach algebras, Normed rings, p-adic representations, p-adic spectrum, p-valuations
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
VOLKWEIS LEITE, Samuel, Alexander PRESTEL, 2016. Algebraic Characterization of Rings of Continuous p-Adic Valued Functions. In: Communications in Algebra. 44(2), pp. 486-499. ISSN 0092-7872. eISSN 1532-4125. Available under: doi: 10.1080/00927872.2014.980892BibTex
@article{VolkweisLeite2016Algeb-33408, year={2016}, doi={10.1080/00927872.2014.980892}, title={Algebraic Characterization of Rings of Continuous p-Adic Valued Functions}, number={2}, volume={44}, issn={0092-7872}, journal={Communications in Algebra}, pages={486--499}, author={Volkweis Leite, Samuel and Prestel, Alexander} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/33408"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-03-22T14:50:59Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Volkweis Leite, Samuel</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <dcterms:issued>2016</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-03-22T14:50:59Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/33408"/> <dc:creator>Volkweis Leite, Samuel</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Prestel, Alexander</dc:creator> <dcterms:title>Algebraic Characterization of Rings of Continuous p-Adic Valued Functions</dcterms:title> <dc:contributor>Prestel, Alexander</dc:contributor> <dcterms:abstract xml:lang="eng">The aim of this article is to characterize among the class of all commutative rings containing ℚ the rings C(X, ℚp) of all continuous ℚp-valued functions on a compact space X. The characterization is similar to that of M. Stone from 1940 (see [9]) for the case of ℝ-valued functions. The Characterization Theorem 4.6 is a consequence of our main result, the p-adic Representation Theorem 4.5.</dcterms:abstract> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes