Type of Publication: | Journal article |
Publication status: | Published |
Author: | Bernard, Julien |
Year of publication: | 2015 |
Published in: | Studies in History and Philosophy of Science Part B : Studies in History and Philosophy of Modern Physics ; 52 (2015). - pp. 251-266. - ISSN 1355-2198. - eISSN 1879-2502 |
DOI (citable link): | https://dx.doi.org/10.1016/j.shpsb.2015.08.008 |
Summary: |
In a letter to Weyl, Becker proposed a new way to solve the problem of space in the relativistic context. This is the result of Becker׳s encounter with the two traditions of thinking about space: Husserlian transcendental phenomenology and Blaschke׳s equiaffine differential geometry. I reconstruct the mathematical content of the Becker–Blaschke solution to the problem of space and highlight the philosophical ideas that guide this construction. This permits me to underline some common properties of Riemannian and Minkowskian manifolds in terms of an unusual notion of isotropy. Finally, I will use this construction as a support to analyze several philosophical differences between Weyl׳s and Becker׳s proposals.
|
Subject (DDC): | 100 Philosophy |
Keywords: | Problem of space, Phenomenology, Affine differential geometry, Oskar Becker, Wilhelm Blaschke, Hermann Weyl |
Bibliography of Konstanz: | Yes |
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
BERNARD, Julien, 2015. Becker–Blaschke problem of space. In: Studies in History and Philosophy of Science Part B : Studies in History and Philosophy of Modern Physics. 52, pp. 251-266. ISSN 1355-2198. eISSN 1879-2502. Available under: doi: 10.1016/j.shpsb.2015.08.008
@article{Bernard2015Becke-33376, title={Becker–Blaschke problem of space}, year={2015}, doi={10.1016/j.shpsb.2015.08.008}, volume={52}, issn={1355-2198}, journal={Studies in History and Philosophy of Science Part B : Studies in History and Philosophy of Modern Physics}, pages={251--266}, author={Bernard, Julien} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/33376"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/52"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/52"/> <dcterms:issued>2015</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-03-18T13:44:52Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/33376"/> <dc:contributor>Bernard, Julien</dc:contributor> <dcterms:title>Becker–Blaschke problem of space</dcterms:title> <dc:creator>Bernard, Julien</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-03-18T13:44:52Z</dcterms:available> <dcterms:abstract xml:lang="eng">In a letter to Weyl, Becker proposed a new way to solve the problem of space in the relativistic context. This is the result of Becker׳s encounter with the two traditions of thinking about space: Husserlian transcendental phenomenology and Blaschke׳s equiaffine differential geometry. I reconstruct the mathematical content of the Becker–Blaschke solution to the problem of space and highlight the philosophical ideas that guide this construction. This permits me to underline some common properties of Riemannian and Minkowskian manifolds in terms of an unusual notion of isotropy. Finally, I will use this construction as a support to analyze several philosophical differences between Weyl׳s and Becker׳s proposals.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>