The interval constrained 3-coloring problem

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

BYRKA, Jaroslaw, Andreas KARRENBAUER, Laura SANITÀ, 2015. The interval constrained 3-coloring problem. In: Theoretical Computer Science. 593, pp. 42-50. ISSN 0304-3975. eISSN 1879-2294. Available under: doi: 10.1016/j.tcs.2015.04.037

@article{Byrka2015-08inter-32969, title={The interval constrained 3-coloring problem}, year={2015}, doi={10.1016/j.tcs.2015.04.037}, volume={593}, issn={0304-3975}, journal={Theoretical Computer Science}, pages={42--50}, author={Byrka, Jaroslaw and Karrenbauer, Andreas and Sanità, Laura} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dc:language>eng</dc:language> <dc:contributor>Byrka, Jaroslaw</dc:contributor> <dcterms:available rdf:datatype="">2016-02-15T13:05:03Z</dcterms:available> <dc:date rdf:datatype="">2016-02-15T13:05:03Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:isPartOf rdf:resource=""/> <dc:creator>Karrenbauer, Andreas</dc:creator> <dc:contributor>Karrenbauer, Andreas</dc:contributor> <bibo:uri rdf:resource=""/> <dc:creator>Sanità, Laura</dc:creator> <dc:contributor>Sanità, Laura</dc:contributor> <dspace:isPartOfCollection rdf:resource=""/> <dc:creator>Byrka, Jaroslaw</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2015-08</dcterms:issued> <dcterms:title>The interval constrained 3-coloring problem</dcterms:title> <dcterms:abstract xml:lang="eng">In this paper, we settle the open complexity status of interval constrained coloring with a fixed number of colors. We prove that the problem is already NP-complete if the number of different colors is 3. Previously, it has only been known that it is NP-complete, if the number of colors is part of the input and that the problem is solvable in polynomial time, if the number of colors is at most 2. We also show that it is hard to satisfy almost all of the constraints for a feasible instance (even in the restricted case where each interval is used at most once). This implies APX-hardness of maximizing the number of simultaneously satisfiable intervals.</dcterms:abstract> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


My Account