The interval constrained 3-coloring problem

Zitieren

Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

BYRKA, Jaroslaw, Andreas KARRENBAUER, Laura SANITÀ, 2015. The interval constrained 3-coloring problem. In: Theoretical Computer Science. 593, pp. 42-50. ISSN 0304-3975. eISSN 1879-2294

@article{Byrka2015-08inter-32969, title={The interval constrained 3-coloring problem}, year={2015}, doi={10.1016/j.tcs.2015.04.037}, volume={593}, issn={0304-3975}, journal={Theoretical Computer Science}, pages={42--50}, author={Byrka, Jaroslaw and Karrenbauer, Andreas and Sanità, Laura} }

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/32969"> <dc:language>eng</dc:language> <dc:contributor>Byrka, Jaroslaw</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-02-15T13:05:03Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-02-15T13:05:03Z</dc:date> <dc:creator>Karrenbauer, Andreas</dc:creator> <dc:contributor>Karrenbauer, Andreas</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/32969"/> <dc:contributor>Sanità, Laura</dc:contributor> <dc:creator>Sanità, Laura</dc:creator> <dc:creator>Byrka, Jaroslaw</dc:creator> <dcterms:issued>2015-08</dcterms:issued> <dcterms:title>The interval constrained 3-coloring problem</dcterms:title> <dcterms:abstract xml:lang="eng">In this paper, we settle the open complexity status of interval constrained coloring with a fixed number of colors. We prove that the problem is already NP-complete if the number of different colors is 3. Previously, it has only been known that it is NP-complete, if the number of colors is part of the input and that the problem is solvable in polynomial time, if the number of colors is at most 2. We also show that it is hard to satisfy almost all of the constraints for a feasible instance (even in the restricted case where each interval is used at most once). This implies APX-hardness of maximizing the number of simultaneously satisfiable intervals.</dcterms:abstract> </rdf:Description> </rdf:RDF>

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto