Hyperbolic polynomials, interlacers, and sums of squares


Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

KUMMER, Mario, Daniel PLAUMANN, Cynthia VINZANT, 2015. Hyperbolic polynomials, interlacers, and sums of squares. In: Mathematical Programming. 153(1), pp. 223-245. ISSN 0025-5610. eISSN 1436-4646

@article{Kummer2015Hyper-32757, title={Hyperbolic polynomials, interlacers, and sums of squares}, year={2015}, doi={10.1007/s10107-013-0736-y}, number={1}, volume={153}, issn={0025-5610}, journal={Mathematical Programming}, pages={223--245}, author={Kummer, Mario and Plaumann, Daniel and Vinzant, Cynthia} }

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/32757"> <dcterms:issued>2015</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-01-28T14:46:29Z</dcterms:available> <dc:contributor>Kummer, Mario</dc:contributor> <dc:language>eng</dc:language> <dc:creator>Kummer, Mario</dc:creator> <dc:contributor>Plaumann, Daniel</dc:contributor> <dc:creator>Plaumann, Daniel</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-01-28T14:46:29Z</dc:date> <dc:contributor>Vinzant, Cynthia</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/32757"/> <dc:creator>Vinzant, Cynthia</dc:creator> <dcterms:title>Hyperbolic polynomials, interlacers, and sums of squares</dcterms:title> <dcterms:abstract xml:lang="eng">Hyperbolic polynomials are real polynomials whose real hypersurfaces are maximally nested ovaloids, the innermost of which is convex. These polynomials appear in many areas of mathematics, including optimization, combinatorics and differential equations. Here we investigate the special connection between a hyperbolic polynomial and the set of polynomials that interlace it. This set of interlacers is a convex cone, which we write as a linear slice of the cone of nonnegative polynomials. In particular, this allows us to realize any hyperbolicity cone as a slice of the cone of nonnegative polynomials. Using a sums of squares relaxation, we then approximate a hyperbolicity cone by the projection of a spectrahedron. A multiaffine example coming from the Vámos matroid shows that this relaxation is not always exact. Using this theory, we characterize the real stable multiaffine polynomials that have a definite determinantal representation and construct one when it exists.</dcterms:abstract> </rdf:Description> </rdf:RDF>

Das Dokument erscheint in:

KOPS Suche


Mein Benutzerkonto