Randomness and Degree Theory for Infinite Time Register Machines

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

CARL, Merlin, 2016. Randomness and Degree Theory for Infinite Time Register Machines. In: Computability. 5(2), pp. 181-196. ISSN 2211-3568. eISSN 2211-3576. Available under: doi: 10.3233/COM-160055

@article{Carl2016Rando-32737, title={Randomness and Degree Theory for Infinite Time Register Machines}, year={2016}, doi={10.3233/COM-160055}, number={2}, volume={5}, issn={2211-3568}, journal={Computability}, pages={181--196}, author={Carl, Merlin} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/32737"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-14T10:50:12Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/32737"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2016</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-14T10:50:12Z</dcterms:available> <dcterms:title>Randomness and Degree Theory for Infinite Time Register Machines</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:contributor>Carl, Merlin</dc:contributor> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:abstract xml:lang="eng">A concept of randomness for infinite time register machines (ITRMs) is defined and studied. In particular, we show that for this notion of randomness, computability from mutually random reals implies computability and that an analogue of van Lambalgen's theorem holds. This is then applied to obtain results on the structure of ITRM-degrees. Finally, we consider autoreducibility for ITRMs and show that randomness implies non-autoreducibility.</dcterms:abstract> <dc:creator>Carl, Merlin</dc:creator> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Version History

Version Item Date Summary Publication Version

*Selected version

Search KOPS


Browse

My Account