KOPS - The Institutional Repository of the University of Konstanz

Forecasting Aggregates with Disaggregate Variables : Does Boosting Help to Select the Most Relevant Predictors?

Forecasting Aggregates with Disaggregate Variables : Does Boosting Help to Select the Most Relevant Predictors?

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

ZENG, Jing, 2017. Forecasting Aggregates with Disaggregate Variables : Does Boosting Help to Select the Most Relevant Predictors?. In: Journal of Forecasting. 36(1), pp. 74-90. ISSN 0277-6693. eISSN 1099-131X. Available under: doi: 10.1002/for.2415

@article{Zeng2017Forec-29225, title={Forecasting Aggregates with Disaggregate Variables : Does Boosting Help to Select the Most Relevant Predictors?}, year={2017}, doi={10.1002/for.2415}, number={1}, volume={36}, issn={0277-6693}, journal={Journal of Forecasting}, pages={74--90}, author={Zeng, Jing} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/29225"> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/29225"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-02-02T08:40:44Z</dc:date> <dc:contributor>Zeng, Jing</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">Including disaggregate variables or using information extracted from the disaggregate variables into a forecasting model for an economic aggregate may improve the forecasting accuracy. In this paper we suggest to use the boosting method to select the disaggregate variables which are most helpful in predicting an aggregate of interest. We conduct a simulation study to investigate the variable selection ability of this method. To assess the forecasting performance a recursive pseudo-out-of-sample forecasting experiment for six key Euro area macroeconomic variables is conducted. The results suggest that using boosting to select relevant predictors is a feasible and competitive approach in forecasting an aggregate.</dcterms:abstract> <dc:creator>Zeng, Jing</dc:creator> <dcterms:issued>2017</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/46"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/46"/> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-02-02T08:40:44Z</dcterms:available> <dcterms:title>Forecasting Aggregates with Disaggregate Variables : Does Boosting Help to Select the Most Relevant Predictors?</dcterms:title> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Version History

Version Item Date Summary Publication Version

*Selected version

Search KOPS


Browse

My Account