Type of Publication: | Journal article |
Publication status: | Published |
Author: | Harari, David; Scheiderer, Claus; Szamuely, Tamás |
Year of publication: | 2015 |
Published in: | International Mathematics Research Notices : IMRN ; 2015, 10. - pp. 2751-2783. - ISSN 1073-7928. - eISSN 1687-0247 |
ArXiv-ID: | arXiv:1307.4783 |
DOI (citable link): | https://dx.doi.org/10.1093/imrn/rnu019 |
Summary: |
We study local–global questions for Galois cohomology over the function field of a curve defined over a p-adic field, the main focus being weak approximation of rational points. We construct a 9-term Poitou–Tate-type exact sequence for tori over a field as above (and also a 12-term sequence for finite modules). Like in the number field case, part of the sequence can then be used to analyze the defect of weak approximation for a torus. We also show that the defect of weak approximation is controlled by a certain subgroup of the third unramified cohomology group of the torus.
|
Subject (DDC): | 510 Mathematics |
Bibliography of Konstanz: | Yes |
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
HARARI, David, Claus SCHEIDERER, Tamás SZAMUELY, 2015. Weak Approximation for Tori Over p-adic Function Fields. In: International Mathematics Research Notices : IMRN(10), pp. 2751-2783. ISSN 1073-7928. eISSN 1687-0247. Available under: doi: 10.1093/imrn/rnu019
@article{Harari2015Appro-26404, title={Weak Approximation for Tori Over p-adic Function Fields}, year={2015}, doi={10.1093/imrn/rnu019}, number={10}, issn={1073-7928}, journal={International Mathematics Research Notices : IMRN}, pages={2751--2783}, author={Harari, David and Scheiderer, Claus and Szamuely, Tamás} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/26404"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-08-08T07:37:39Z</dcterms:available> <dc:language>eng</dc:language> <dc:contributor>Harari, David</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:creator>Scheiderer, Claus</dc:creator> <dcterms:abstract xml:lang="eng">We study local–global questions for Galois cohomology over the function field of a curve defined over a p-adic field, the main focus being weak approximation of rational points. We construct a 9-term Poitou–Tate-type exact sequence for tori over a field as above (and also a 12-term sequence for finite modules). Like in the number field case, part of the sequence can then be used to analyze the defect of weak approximation for a torus. We also show that the defect of weak approximation is controlled by a certain subgroup of the third unramified cohomology group of the torus.</dcterms:abstract> <dc:contributor>Scheiderer, Claus</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Harari, David</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/26404"/> <dcterms:title>Weak Approximation for Tori Over p-adic Function Fields</dcterms:title> <dc:rights>terms-of-use</dc:rights> <dc:creator>Szamuely, Tamás</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-08-08T07:37:39Z</dc:date> <dcterms:issued>2015</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:contributor>Szamuely, Tamás</dc:contributor> </rdf:Description> </rdf:RDF>