Strong solutions for a compressible fluid model of Korteweg type

Zitieren

Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

KOTSCHOTE, Matthias, 2008. Strong solutions for a compressible fluid model of Korteweg type. In: Annales de l'Institut Henri Poincare (C) Non Linear Analysis. 25(4), pp. 679-696. ISSN 0294-1449. eISSN 1873-1430. Available under: doi: 10.1016/j.anihpc.2007.03.005

@article{Kotschote2008Stron-25498, title={Strong solutions for a compressible fluid model of Korteweg type}, year={2008}, doi={10.1016/j.anihpc.2007.03.005}, number={4}, volume={25}, issn={0294-1449}, journal={Annales de l'Institut Henri Poincare (C) Non Linear Analysis}, pages={679--696}, author={Kotschote, Matthias} }

2013-12-18T08:19:48Z Annales de l'Institut Henri Poincaré (C): Non Linear Analysis ; 25 (2008), 4. - S. - 679-696 Kotschote, Matthias deposit-license eng Kotschote, Matthias 2013-12-18T08:19:48Z We prove existence and uniqueness of local strong solutions for an isothermal model of capillary compressible fluids derived by J.E. Dunn and J. Serrin (1985). This nonlinear problem is approached by proving maximal regularity for a related linear problem in order to formulate a fixed point equation, which is solved by the contraction mapping principle. Localising the linear problem leads to model problems in full and half space, which are treated by Dore–Venni Theory, real interpolation and H<sup>∞</sup>-calculus. For these steps, it is decisive to find conditions on the inhomogeneities that are necessary and sufficient. Strong solutions for a compressible fluid model of Korteweg type 2008

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto