Publikation:

The Konstanz natural video database (KoNViD-1k)

Lade...
Vorschaubild

Dateien

Hosu_2-e7mh9z8d8u09.pdf
Hosu_2-e7mh9z8d8u09.pdfGröße: 208.42 KBDownloads: 858

Datum

2017

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

2017 Ninth International Conference on Quality of Multimedia Experience (QoMEX). Piscataway, NJ: IEEE, 2017. ISBN 978-1-5386-4024-1. Available under: doi: 10.1109/QoMEX.2017.7965673

Zusammenfassung

Subjective video quality assessment (VQA) strongly depends on semantics, context, and the types of visual distortions. Currently, all existing VQA databases include only a small num- ber of video sequences with artificial distortions. The development and evaluation of objective quality assessment methods would benefit from having larger datasets of real-world video sequences with corresponding subjective mean opinion scores (MOS), in particular for deep learning purposes. In addition, the training and validation of any VQA method intended to be ‘general purpose’ requires a large dataset of video sequences that are representative of the whole spectrum of available video content and all types of distortions. We report our work on KoNViD-1k, a subjectively annotated VQA database consisting of 1,200 public- domain video sequences, fairly sampled from a large public video dataset, YFCC100m. We present the challenges and choices we have made in creating such a database aimed at ‘in the wild’ authentic distortions, depicting a wide variety of content.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Video database, authentic video, video qualitiy assessment, fair samling, crowdsourcing

Konferenz

International Conference on Quality of Multimedia Experience (QoMEX 2017), 31. Mai 2017 - 2. Juni 2017, Erfurt
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HOSU, Vlad, Franz HAHN, Mohsen JENADELEH, Hanhe LIN, Hui MEN, Tamas SZIRANYI, Shujun LI, Dietmar SAUPE, 2017. The Konstanz natural video database (KoNViD-1k). International Conference on Quality of Multimedia Experience (QoMEX 2017). Erfurt, 31. Mai 2017 - 2. Juni 2017. In: 2017 Ninth International Conference on Quality of Multimedia Experience (QoMEX). Piscataway, NJ: IEEE, 2017. ISBN 978-1-5386-4024-1. Available under: doi: 10.1109/QoMEX.2017.7965673
BibTex
@inproceedings{Hosu2017Konst-39103,
  year={2017},
  doi={10.1109/QoMEX.2017.7965673},
  title={The Konstanz natural video database (KoNViD-1k)},
  url={https://www.uni-konstanz.de/mmsp/pubsys/publishedFiles/HoHaJe17.pdf},
  isbn={978-1-5386-4024-1},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={2017 Ninth International Conference on Quality of Multimedia Experience (QoMEX)},
  author={Hosu, Vlad and Hahn, Franz and Jenadeleh, Mohsen and Lin, Hanhe and Men, Hui and Sziranyi, Tamas and Li, Shujun and Saupe, Dietmar}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39103">
    <dc:contributor>Hosu, Vlad</dc:contributor>
    <dcterms:title>The Konstanz natural video database (KoNViD-1k)</dcterms:title>
    <dc:creator>Jenadeleh, Mohsen</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">Subjective video quality assessment (VQA) strongly depends on semantics, context, and the types of visual distortions. Currently, all existing VQA databases include only a small num- ber of video sequences with artificial distortions. The development and  evaluation  of  objective  quality  assessment  methods  would benefit from having larger datasets of real-world video sequences with  corresponding  subjective  mean  opinion  scores  (MOS),  in particular  for  deep  learning  purposes.  In  addition,  the  training and  validation  of  any  VQA  method  intended  to  be  ‘general purpose’  requires  a  large  dataset  of  video  sequences  that  are representative  of  the  whole  spectrum  of  available  video  content and all types of distortions. We report our work on KoNViD-1k, a subjectively annotated VQA database consisting of 1,200 public- domain video sequences, fairly sampled from a large public video dataset,  YFCC100m.  We  present  the  challenges  and  choices  we have  made  in  creating  such  a  database  aimed  at  ‘in  the  wild’ authentic  distortions,  depicting  a  wide  variety  of  content.</dcterms:abstract>
    <dc:creator>Men, Hui</dc:creator>
    <dc:creator>Hahn, Franz</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/39103"/>
    <dc:creator>Hosu, Vlad</dc:creator>
    <dc:contributor>Saupe, Dietmar</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/39103/1/Hosu_2-e7mh9z8d8u09.pdf"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Hahn, Franz</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:creator>Lin, Hanhe</dc:creator>
    <dcterms:issued>2017</dcterms:issued>
    <dc:creator>Saupe, Dietmar</dc:creator>
    <dc:contributor>Lin, Hanhe</dc:contributor>
    <dc:contributor>Li, Shujun</dc:contributor>
    <dc:contributor>Jenadeleh, Mohsen</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-06-01T09:41:07Z</dcterms:available>
    <dc:creator>Li, Shujun</dc:creator>
    <dc:creator>Sziranyi, Tamas</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:rights>terms-of-use</dc:rights>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/39103/1/Hosu_2-e7mh9z8d8u09.pdf"/>
    <dc:contributor>Men, Hui</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-06-01T09:41:07Z</dc:date>
    <dc:contributor>Sziranyi, Tamas</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt

Prüfdatum der URL

2017-05-11

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen