Publikation: Vanishing Hessian, wild forms and their border VSP
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Wild forms are homogeneous polynomials whose smoothable rank is strictly larger than their border rank. The discrepancy between these two ranks is caused by the difference between the limit of spans of a family of zero-dimensional schemes and the span of their flat limit. For concise forms of minimal border rank, we show that the condition of vanishing Hessian is equivalent to being wild. This is proven by making a detour through structure tensors of smoothable and Gorenstein algebras. The equivalence fails in the non-minimal border rank regime. We exhibit an infinite series of minimal border rank wild forms of every degree d≥3 as well as an infinite series of wild cubics. Inspired by recent work on border apolarity of Buczyńska and Buczyński, we study the border varieties of sums of powers VSP of these forms in the corresponding multigraded Hilbert schemes.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HUANG, Hang, Mateusz MICHALEK, Emanuele VENTURA, 2020. Vanishing Hessian, wild forms and their border VSP. In: Mathematische Annalen. Springer. 2020, 378(3-4), pp. 1505-1532. ISSN 0025-5831. eISSN 1432-1807. Available under: doi: 10.1007/s00208-020-02080-8BibTex
@article{Huang2020Vanis-52468, year={2020}, doi={10.1007/s00208-020-02080-8}, title={Vanishing Hessian, wild forms and their border VSP}, number={3-4}, volume={378}, issn={0025-5831}, journal={Mathematische Annalen}, pages={1505--1532}, author={Huang, Hang and Michalek, Mateusz and Ventura, Emanuele} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52468"> <dc:rights>Attribution 4.0 International</dc:rights> <dcterms:abstract xml:lang="eng">Wild forms are homogeneous polynomials whose smoothable rank is strictly larger than their border rank. The discrepancy between these two ranks is caused by the difference between the limit of spans of a family of zero-dimensional schemes and the span of their flat limit. For concise forms of minimal border rank, we show that the condition of vanishing Hessian is equivalent to being wild. This is proven by making a detour through structure tensors of smoothable and Gorenstein algebras. The equivalence fails in the non-minimal border rank regime. We exhibit an infinite series of minimal border rank wild forms of every degree d≥3 as well as an infinite series of wild cubics. Inspired by recent work on border apolarity of Buczyńska and Buczyński, we study the border varieties of sums of powers VSP of these forms in the corresponding multigraded Hilbert schemes.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:title>Vanishing Hessian, wild forms and their border VSP</dcterms:title> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52468/1/Huang_2-1uyhhc0ccww44.pdf"/> <dcterms:issued>2020</dcterms:issued> <dc:contributor>Ventura, Emanuele</dc:contributor> <dc:creator>Huang, Hang</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-15T12:44:07Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52468"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-15T12:44:07Z</dc:date> <dc:contributor>Huang, Hang</dc:contributor> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Ventura, Emanuele</dc:creator> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:creator>Michalek, Mateusz</dc:creator> <dc:contributor>Michalek, Mateusz</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52468/1/Huang_2-1uyhhc0ccww44.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> </rdf:Description> </rdf:RDF>