Publikation:

The algebra of conditional sets and the concepts of conditional topology and compactness

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2016

Autor:innen

Drapeau, Samuel
Karliczek, Martin

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Mathematical Analysis and Applications. 2016, 437(1), pp. 561-589. ISSN 0002-5232. eISSN 1573-8302. Available under: doi: 10.1016/j.jmaa.2015.11.057

Zusammenfassung

The concepts of a conditional set, a conditional inclusion relation and a conditional Cartesian product are introduced. The resulting conditional set theory is sufficiently rich in order to construct a conditional topology, a conditional real and functional analysis indicating the possibility of a mathematical discourse based on conditional sets. It is proved that the conditional power set is a complete Boolean algebra, and a conditional version of the axiom of choice, the ultrafilter lemma, Tychonoff's theorem, the Borel–Lebesgue theorem, the Hahn–Banach theorem, the Banach–Alaoglu theorem and the Krein–Šmulian theorem are shown.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Conditional sets; Conditional topology; Conditional compactness; Conditional functional analysis

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690DRAPEAU, Samuel, Asgar JAMNESHAN, Martin KARLICZEK, Michael KUPPER, 2016. The algebra of conditional sets and the concepts of conditional topology and compactness. In: Journal of Mathematical Analysis and Applications. 2016, 437(1), pp. 561-589. ISSN 0002-5232. eISSN 1573-8302. Available under: doi: 10.1016/j.jmaa.2015.11.057
BibTex
@article{Drapeau2016algeb-29893,
  year={2016},
  doi={10.1016/j.jmaa.2015.11.057},
  title={The algebra of conditional sets and the concepts of conditional topology and compactness},
  number={1},
  volume={437},
  issn={0002-5232},
  journal={Journal of Mathematical Analysis and Applications},
  pages={561--589},
  author={Drapeau, Samuel and Jamneshan, Asgar and Karliczek, Martin and Kupper, Michael}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29893">
    <dcterms:issued>2016</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/29893"/>
    <dc:contributor>Drapeau, Samuel</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-03-01T13:37:15Z</dc:date>
    <dcterms:title>The algebra of conditional sets and the concepts of conditional topology and compactness</dcterms:title>
    <dc:creator>Karliczek, Martin</dc:creator>
    <dc:contributor>Jamneshan, Asgar</dc:contributor>
    <dc:creator>Drapeau, Samuel</dc:creator>
    <dc:creator>Kupper, Michael</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-03-01T13:37:15Z</dcterms:available>
    <dc:contributor>Karliczek, Martin</dc:contributor>
    <dcterms:abstract xml:lang="eng">The concepts of a conditional set, a conditional inclusion relation and a conditional Cartesian product are introduced. The resulting conditional set theory is sufficiently rich in order to construct a conditional topology, a conditional real and functional analysis indicating the possibility of a mathematical discourse based on conditional sets. It is proved that the conditional power set is a complete Boolean algebra, and a conditional version of the axiom of choice, the ultrafilter lemma, Tychonoff's theorem, the Borel–Lebesgue theorem, the Hahn–Banach theorem, the Banach–Alaoglu theorem and the Krein–Šmulian theorem are shown.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Jamneshan, Asgar</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Kupper, Michael</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen

Versionsgeschichte

Gerade angezeigt 1 - 2 von 2
VersionDatumZusammenfassung
2*
2016-03-01 13:32:21
2015-02-19 13:55:56
* Ausgewählte Version