Publikation: The algebra of conditional sets and the concepts of conditional topology and compactness
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2016
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Mathematical Analysis and Applications. 2016, 437(1), pp. 561-589. ISSN 0002-5232. eISSN 1573-8302. Available under: doi: 10.1016/j.jmaa.2015.11.057
Zusammenfassung
The concepts of a conditional set, a conditional inclusion relation and a conditional Cartesian product are introduced. The resulting conditional set theory is sufficiently rich in order to construct a conditional topology, a conditional real and functional analysis indicating the possibility of a mathematical discourse based on conditional sets. It is proved that the conditional power set is a complete Boolean algebra, and a conditional version of the axiom of choice, the ultrafilter lemma, Tychonoff's theorem, the Borel–Lebesgue theorem, the Hahn–Banach theorem, the Banach–Alaoglu theorem and the Krein–Šmulian theorem are shown.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Conditional sets; Conditional topology; Conditional compactness; Conditional functional analysis
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
DRAPEAU, Samuel, Asgar JAMNESHAN, Martin KARLICZEK, Michael KUPPER, 2016. The algebra of conditional sets and the concepts of conditional topology and compactness. In: Journal of Mathematical Analysis and Applications. 2016, 437(1), pp. 561-589. ISSN 0002-5232. eISSN 1573-8302. Available under: doi: 10.1016/j.jmaa.2015.11.057BibTex
@article{Drapeau2016algeb-29893, year={2016}, doi={10.1016/j.jmaa.2015.11.057}, title={The algebra of conditional sets and the concepts of conditional topology and compactness}, number={1}, volume={437}, issn={0002-5232}, journal={Journal of Mathematical Analysis and Applications}, pages={561--589}, author={Drapeau, Samuel and Jamneshan, Asgar and Karliczek, Martin and Kupper, Michael} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29893"> <dcterms:issued>2016</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/29893"/> <dc:contributor>Drapeau, Samuel</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-03-01T13:37:15Z</dc:date> <dcterms:title>The algebra of conditional sets and the concepts of conditional topology and compactness</dcterms:title> <dc:creator>Karliczek, Martin</dc:creator> <dc:contributor>Jamneshan, Asgar</dc:contributor> <dc:creator>Drapeau, Samuel</dc:creator> <dc:creator>Kupper, Michael</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-03-01T13:37:15Z</dcterms:available> <dc:contributor>Karliczek, Martin</dc:contributor> <dcterms:abstract xml:lang="eng">The concepts of a conditional set, a conditional inclusion relation and a conditional Cartesian product are introduced. The resulting conditional set theory is sufficiently rich in order to construct a conditional topology, a conditional real and functional analysis indicating the possibility of a mathematical discourse based on conditional sets. It is proved that the conditional power set is a complete Boolean algebra, and a conditional version of the axiom of choice, the ultrafilter lemma, Tychonoff's theorem, the Borel–Lebesgue theorem, the Hahn–Banach theorem, the Banach–Alaoglu theorem and the Krein–Šmulian theorem are shown.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Jamneshan, Asgar</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Kupper, Michael</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja