Publikation: Color Composition Similarity and Its Application in Fine-grained Similarity
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Assessing visual similarity in-the-wild, a core ability of the human visual system, is a challenging problem for computer vision methods because of its subjective nature and limited annotated datasets. We make a stride forward, showing that visual similarity can be better studied by isolating its components. We identify color composition similarity as an important aspect and study its interaction with category-level similarity. Color composition similarity considers the distribution of colors and their layout in images. We create predictive models accounting for the global similarity that is beyond pixel-based and patch-based, or histogram level information. Using an active learning approach, we build a large-scale color composition similarity dataset with subjective ratings via crowd-sourcing, the first of its kind. We train a Siamese network using the dataset to create a color similarity metric and descriptors which outperform existing color descriptors. We also provide a benchmark for global color descriptors for perceptual color similarity. Finally, we combine color similarity and category level features for fine-grained visual similarity. Our proposed model surpasses the state-of-the-art performance while using three orders of magnitude less training data. The results suggest that our proposal to study visual similarity by isolating its components, modeling and combining them is a promising paradigm for further development.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
LAN HA, Mai, Vlad HOSU, Volker BLANZ, 2020. Color Composition Similarity and Its Application in Fine-grained Similarity. 2020 IEEE Winter Conference on Applications of Computer Vision (WACV). Snowmass, CO, 1. März 2020 - 5. März 2020. In: 2020 IEEE Winter Conference on Applications of Computer Vision (WACV). Piscataway, NJ: IEEE, 2020, pp. 2548-2557. eISSN 2642-9381. ISBN 978-1-72816-553-0. Available under: doi: 10.1109/WACV45572.2020.9093522BibTex
@inproceedings{LanHa2020Color-53099, year={2020}, doi={10.1109/WACV45572.2020.9093522}, title={Color Composition Similarity and Its Application in Fine-grained Similarity}, isbn={978-1-72816-553-0}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={2020 IEEE Winter Conference on Applications of Computer Vision (WACV)}, pages={2548--2557}, author={Lan Ha, Mai and Hosu, Vlad and Blanz, Volker} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53099"> <dcterms:title>Color Composition Similarity and Its Application in Fine-grained Similarity</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53099"/> <dcterms:abstract xml:lang="eng">Assessing visual similarity in-the-wild, a core ability of the human visual system, is a challenging problem for computer vision methods because of its subjective nature and limited annotated datasets. We make a stride forward, showing that visual similarity can be better studied by isolating its components. We identify color composition similarity as an important aspect and study its interaction with category-level similarity. Color composition similarity considers the distribution of colors and their layout in images. We create predictive models accounting for the global similarity that is beyond pixel-based and patch-based, or histogram level information. Using an active learning approach, we build a large-scale color composition similarity dataset with subjective ratings via crowd-sourcing, the first of its kind. We train a Siamese network using the dataset to create a color similarity metric and descriptors which outperform existing color descriptors. We also provide a benchmark for global color descriptors for perceptual color similarity. Finally, we combine color similarity and category level features for fine-grained visual similarity. Our proposed model surpasses the state-of-the-art performance while using three orders of magnitude less training data. The results suggest that our proposal to study visual similarity by isolating its components, modeling and combining them is a promising paradigm for further development.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Blanz, Volker</dc:creator> <dc:contributor>Hosu, Vlad</dc:contributor> <dc:creator>Hosu, Vlad</dc:creator> <dc:contributor>Lan Ha, Mai</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Lan Ha, Mai</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-08T10:04:07Z</dcterms:available> <dcterms:issued>2020</dcterms:issued> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-08T10:04:07Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Blanz, Volker</dc:contributor> </rdf:Description> </rdf:RDF>