Publikation:

Color Composition Similarity and Its Application in Fine-grained Similarity

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2020

Autor:innen

Lan Ha, Mai
Blanz, Volker

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

2020 IEEE Winter Conference on Applications of Computer Vision (WACV). Piscataway, NJ: IEEE, 2020, pp. 2548-2557. eISSN 2642-9381. ISBN 978-1-72816-553-0. Available under: doi: 10.1109/WACV45572.2020.9093522

Zusammenfassung

Assessing visual similarity in-the-wild, a core ability of the human visual system, is a challenging problem for computer vision methods because of its subjective nature and limited annotated datasets. We make a stride forward, showing that visual similarity can be better studied by isolating its components. We identify color composition similarity as an important aspect and study its interaction with category-level similarity. Color composition similarity considers the distribution of colors and their layout in images. We create predictive models accounting for the global similarity that is beyond pixel-based and patch-based, or histogram level information. Using an active learning approach, we build a large-scale color composition similarity dataset with subjective ratings via crowd-sourcing, the first of its kind. We train a Siamese network using the dataset to create a color similarity metric and descriptors which outperform existing color descriptors. We also provide a benchmark for global color descriptors for perceptual color similarity. Finally, we combine color similarity and category level features for fine-grained visual similarity. Our proposed model surpasses the state-of-the-art performance while using three orders of magnitude less training data. The results suggest that our proposal to study visual similarity by isolating its components, modeling and combining them is a promising paradigm for further development.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

2020 IEEE Winter Conference on Applications of Computer Vision (WACV), 1. März 2020 - 5. März 2020, Snowmass, CO
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690LAN HA, Mai, Vlad HOSU, Volker BLANZ, 2020. Color Composition Similarity and Its Application in Fine-grained Similarity. 2020 IEEE Winter Conference on Applications of Computer Vision (WACV). Snowmass, CO, 1. März 2020 - 5. März 2020. In: 2020 IEEE Winter Conference on Applications of Computer Vision (WACV). Piscataway, NJ: IEEE, 2020, pp. 2548-2557. eISSN 2642-9381. ISBN 978-1-72816-553-0. Available under: doi: 10.1109/WACV45572.2020.9093522
BibTex
@inproceedings{LanHa2020Color-53099,
  year={2020},
  doi={10.1109/WACV45572.2020.9093522},
  title={Color Composition Similarity and Its Application in Fine-grained Similarity},
  isbn={978-1-72816-553-0},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={2020 IEEE Winter Conference on Applications of Computer Vision (WACV)},
  pages={2548--2557},
  author={Lan Ha, Mai and Hosu, Vlad and Blanz, Volker}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53099">
    <dcterms:title>Color Composition Similarity and Its Application in Fine-grained Similarity</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53099"/>
    <dcterms:abstract xml:lang="eng">Assessing visual similarity in-the-wild, a core ability of the human visual system, is a challenging problem for computer vision methods because of its subjective nature and limited annotated datasets. We make a stride forward, showing that visual similarity can be better studied by isolating its components. We identify color composition similarity as an important aspect and study its interaction with category-level similarity. Color composition similarity considers the distribution of colors and their layout in images. We create predictive models accounting for the global similarity that is beyond pixel-based and patch-based, or histogram level information. Using an active learning approach, we build a large-scale color composition similarity dataset with subjective ratings via crowd-sourcing, the first of its kind. We train a Siamese network using the dataset to create a color similarity metric and descriptors which outperform existing color descriptors. We also provide a benchmark for global color descriptors for perceptual color similarity. Finally, we combine color similarity and category level features for fine-grained visual similarity. Our proposed model surpasses the state-of-the-art performance while using three orders of magnitude less training data. The results suggest that our proposal to study visual similarity by isolating its components, modeling and combining them is a promising paradigm for further development.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Blanz, Volker</dc:creator>
    <dc:contributor>Hosu, Vlad</dc:contributor>
    <dc:creator>Hosu, Vlad</dc:creator>
    <dc:contributor>Lan Ha, Mai</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Lan Ha, Mai</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-08T10:04:07Z</dcterms:available>
    <dcterms:issued>2020</dcterms:issued>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-08T10:04:07Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Blanz, Volker</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen