Publikation: A note on the practicality of maximal planar subgraph algorithms
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2016
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
HU, Yifan, ed., Martin NÖLLENBURG, ed.. Graph Drawing and Network Visualization : 24th International Symposium, GD 2016, Athens, Greece, September 19-21, 2016, Revised Selected Papers. Cham: Springer International Publishing - Springer, 2016, pp. 357-364. Lecture Notes in Computer Science. 9801. ISBN 978-3-319-50105-5. Available under: doi: 10.1007/978-3-319-50106-2_28
Zusammenfassung
Given a graph G, the NP-hard Maximum Planar Subgraph problem (MPS) asks for a planar subgraph of G with the maximum number of edges. There are several heuristic, approximative, and exact algorithms to tackle the problem, but—to the best of our knowledge—they have never been compared competitively in practice. We report on an exploratory study on the relative merits of the diverse approaches, focusing on practical runtime, solution quality, and implementation complexity. Surprisingly, a seemingly only theoretically strong approximation forms the building block of the strongest choice.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
International Symposium on Graph Drawing and Network Visualization, 19. Sept. 2016 - 21. Sept. 2016, Athens, Greece
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
CHIMANI, Markus, Karsten KLEIN, Tilo WIEDERA, 2016. A note on the practicality of maximal planar subgraph algorithms. International Symposium on Graph Drawing and Network Visualization. Athens, Greece, 19. Sept. 2016 - 21. Sept. 2016. In: HU, Yifan, ed., Martin NÖLLENBURG, ed.. Graph Drawing and Network Visualization : 24th International Symposium, GD 2016, Athens, Greece, September 19-21, 2016, Revised Selected Papers. Cham: Springer International Publishing - Springer, 2016, pp. 357-364. Lecture Notes in Computer Science. 9801. ISBN 978-3-319-50105-5. Available under: doi: 10.1007/978-3-319-50106-2_28BibTex
@inproceedings{Chimani2016pract-36860, year={2016}, doi={10.1007/978-3-319-50106-2_28}, title={A note on the practicality of maximal planar subgraph algorithms}, number={9801}, isbn={978-3-319-50105-5}, publisher={Springer International Publishing - Springer}, address={Cham}, series={Lecture Notes in Computer Science}, booktitle={Graph Drawing and Network Visualization : 24th International Symposium, GD 2016, Athens, Greece, September 19-21, 2016, Revised Selected Papers}, pages={357--364}, editor={Hu, Yifan and Nöllenburg, Martin}, author={Chimani, Markus and Klein, Karsten and Wiedera, Tilo} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36860"> <dc:creator>Chimani, Markus</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/36860"/> <dc:creator>Wiedera, Tilo</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:abstract xml:lang="eng">Given a graph G, the NP-hard Maximum Planar Subgraph problem (MPS) asks for a planar subgraph of G with the maximum number of edges. There are several heuristic, approximative, and exact algorithms to tackle the problem, but—to the best of our knowledge—they have never been compared competitively in practice. We report on an exploratory study on the relative merits of the diverse approaches, focusing on practical runtime, solution quality, and implementation complexity. Surprisingly, a seemingly only theoretically strong approximation forms the building block of the strongest choice.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-01-20T10:00:47Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Wiedera, Tilo</dc:contributor> <dcterms:issued>2016</dcterms:issued> <dc:creator>Klein, Karsten</dc:creator> <dcterms:title>A note on the practicality of maximal planar subgraph algorithms</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-01-20T10:00:47Z</dcterms:available> <dc:contributor>Chimani, Markus</dc:contributor> <dc:contributor>Klein, Karsten</dc:contributor> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja