Publikation: Content-aware image restoration : pushing the limits of fluorescence microscopy
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Fluorescence microscopy is a key driver of discoveries in the life sciences, with observable phenomena being limited by the optics of the microscope, the chemistry of the fluorophores, and the maximum photon exposure tolerated by the sample. These limits necessitate trade-offs between imaging speed, spatial resolution, light exposure, and imaging depth. In this work we show how content-aware image restoration based on deep learning extends the range of biological phenomena observable by microscopy. We demonstrate on eight concrete examples how microscopy images can be restored even if 60-fold fewer photons are used during acquisition, how near isotropic resolution can be achieved with up to tenfold under-sampling along the axial direction, and how tubular and granular structures smaller than the diffraction limit can be resolved at 20-times-higher frame rates compared to state-of-the-art methods. All developed image restoration methods are freely available as open source software in Python, FIJI, and KNIME.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
WEIGERT, Martin, Uwe SCHMIDT, Tobias BOOTHE, Andreas MÜLLER, Alexandr DIBROV, Akanksha JAIN, Benjamin WILHELM, Deborah SCHMIDT, Loic ROYER, Florian JUG, 2018. Content-aware image restoration : pushing the limits of fluorescence microscopy. In: Nature Methods. 2018, 15(12), pp. 1090-1097. ISSN 1548-7091. eISSN 1548-7105. Available under: doi: 10.1038/s41592-018-0216-7BibTex
@article{Weigert2018-12Conte-44531, year={2018}, doi={10.1038/s41592-018-0216-7}, title={Content-aware image restoration : pushing the limits of fluorescence microscopy}, number={12}, volume={15}, issn={1548-7091}, journal={Nature Methods}, pages={1090--1097}, author={Weigert, Martin and Schmidt, Uwe and Boothe, Tobias and Müller, Andreas and Dibrov, Alexandr and Jain, Akanksha and Wilhelm, Benjamin and Schmidt, Deborah and Royer, Loic and Jug, Florian} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44531"> <dc:creator>Dibrov, Alexandr</dc:creator> <dc:contributor>Royer, Loic</dc:contributor> <dc:creator>Jain, Akanksha</dc:creator> <dc:contributor>Müller, Andreas</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-11T10:58:02Z</dcterms:available> <dc:creator>Boothe, Tobias</dc:creator> <dc:creator>Schmidt, Uwe</dc:creator> <dcterms:issued>2018-12</dcterms:issued> <dc:creator>Royer, Loic</dc:creator> <dc:contributor>Dibrov, Alexandr</dc:contributor> <dcterms:abstract xml:lang="eng">Fluorescence microscopy is a key driver of discoveries in the life sciences, with observable phenomena being limited by the optics of the microscope, the chemistry of the fluorophores, and the maximum photon exposure tolerated by the sample. These limits necessitate trade-offs between imaging speed, spatial resolution, light exposure, and imaging depth. In this work we show how content-aware image restoration based on deep learning extends the range of biological phenomena observable by microscopy. We demonstrate on eight concrete examples how microscopy images can be restored even if 60-fold fewer photons are used during acquisition, how near isotropic resolution can be achieved with up to tenfold under-sampling along the axial direction, and how tubular and granular structures smaller than the diffraction limit can be resolved at 20-times-higher frame rates compared to state-of-the-art methods. All developed image restoration methods are freely available as open source software in Python, FIJI, and KNIME.</dcterms:abstract> <dc:creator>Müller, Andreas</dc:creator> <dc:creator>Schmidt, Deborah</dc:creator> <dc:creator>Jug, Florian</dc:creator> <dc:contributor>Schmidt, Uwe</dc:contributor> <dc:contributor>Weigert, Martin</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:title>Content-aware image restoration : pushing the limits of fluorescence microscopy</dcterms:title> <dc:contributor>Boothe, Tobias</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Weigert, Martin</dc:creator> <dc:contributor>Jain, Akanksha</dc:contributor> <dc:creator>Wilhelm, Benjamin</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44531"/> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-11T10:58:02Z</dc:date> <dc:contributor>Schmidt, Deborah</dc:contributor> <dc:contributor>Jug, Florian</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Wilhelm, Benjamin</dc:contributor> </rdf:Description> </rdf:RDF>