Publikation:

Large-scale crowdsourced subjective assessment of picturewise just noticeable difference

Lade...
Vorschaubild

Dateien

Lin_2-54g16qw29m6b7.pdf
Lin_2-54g16qw29m6b7.pdfGröße: 3.96 MBDownloads: 66

Datum

2022

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

IEEE Transactions on Circuits and Systems for Video Technology. IEEE. 2022, 32(9), pp. 5859-5873. ISSN 1051-8215. eISSN 1558-2205. Available under: doi: 10.1109/TCSVT.2022.3163860

Zusammenfassung

The picturewise just noticeable difference (PJND) for a given image, compression scheme, and subject is the smallest distortion level that the subject can perceive when the image is compressed with this compression scheme. The PJND can be used to determine the compression level at which a given proportion of the population does not notice any distortion in the compressed image. To obtain accurate and diverse results, the PJND must be determined for a large number of subjects and images. This is particularly important when experimental PJND data are used to train deep learning models that can predict a probability distribution model of the PJND for a new image. To date, such subjective studies have been carried out in laboratory environments. However, the number of participants and images in all existing PJND studies is very small because of the challenges involved in setting up laboratory experiments. To address this limitation, we develop a framework to conduct PJND assessments via crowdsourcing. We use a new technique based on slider adjustment and a flicker test to determine the PJND. A pilot study demonstrated that our technique could decrease the study duration by 50% and double the perceptual sensitivity compared to the standard binary search approach that successively compares a test image side by side with its reference image. Our framework includes a robust and systematic scheme to ensure the reliability of the crowdsourced results. Using 1,008 source images and distorted versions obtained with JPEG and BPG compression, we apply our crowdsourcing framework to build the largest PJND dataset, KonJND-1k (Konstanz just noticeable difference 1k dataset). A total of 503 workers participated in the study, yielding 61,030 PJND samples that resulted in an average of 42 samples per source image. The KonJND-1k dataset is available at http://database.mmsp-kn.de/konjnd-1k-database.html.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690LIN, Hanhe, Guangan CHEN, Mohsen JENADELEH, Vlad HOSU, Ulf-Dietrich REIPS, Raouf HAMZAOUI, Dietmar SAUPE, 2022. Large-scale crowdsourced subjective assessment of picturewise just noticeable difference. In: IEEE Transactions on Circuits and Systems for Video Technology. IEEE. 2022, 32(9), pp. 5859-5873. ISSN 1051-8215. eISSN 1558-2205. Available under: doi: 10.1109/TCSVT.2022.3163860
BibTex
@article{Lin2022Large-57160,
  year={2022},
  doi={10.1109/TCSVT.2022.3163860},
  title={Large-scale crowdsourced subjective assessment of picturewise just noticeable difference},
  number={9},
  volume={32},
  issn={1051-8215},
  journal={IEEE Transactions on Circuits and Systems for Video Technology},
  pages={5859--5873},
  author={Lin, Hanhe and Chen, Guangan and Jenadeleh, Mohsen and Hosu, Vlad and Reips, Ulf-Dietrich and Hamzaoui, Raouf and Saupe, Dietmar}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57160">
    <dc:creator>Reips, Ulf-Dietrich</dc:creator>
    <dc:creator>Hosu, Vlad</dc:creator>
    <dc:contributor>Reips, Ulf-Dietrich</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-04-05T08:13:03Z</dc:date>
    <dc:contributor>Chen, Guangan</dc:contributor>
    <dc:contributor>Hosu, Vlad</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57160/1/Lin_2-54g16qw29m6b7.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Hamzaoui, Raouf</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57160/1/Lin_2-54g16qw29m6b7.pdf"/>
    <dc:creator>Saupe, Dietmar</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Hamzaoui, Raouf</dc:creator>
    <dc:language>eng</dc:language>
    <dc:creator>Chen, Guangan</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2022</dcterms:issued>
    <dc:contributor>Saupe, Dietmar</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-04-05T08:13:03Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57160"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dc:contributor>Jenadeleh, Mohsen</dc:contributor>
    <dc:creator>Lin, Hanhe</dc:creator>
    <dc:creator>Jenadeleh, Mohsen</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract xml:lang="eng">The picturewise just noticeable difference (PJND) for a given image, compression scheme, and subject is the smallest distortion level that the subject can perceive when the image is compressed with this compression scheme. The PJND can be used to determine the compression level at which a given proportion of the population does not notice any distortion in the compressed image. To obtain accurate and diverse results, the PJND must be determined for a large number of subjects and images. This is particularly important when experimental PJND data are used to train deep learning models that can predict a probability distribution model of the PJND for a new image. To date, such subjective studies have been carried out in laboratory environments. However, the number of participants and images in all existing PJND studies is very small because of the challenges involved in setting up laboratory experiments. To address this limitation, we develop a framework to conduct PJND assessments via crowdsourcing. We use a new technique based on slider adjustment and a flicker test to determine the PJND. A pilot study demonstrated that our technique could decrease the study duration by 50% and double the perceptual sensitivity compared to the standard binary search approach that successively compares a test image side by side with its reference image. Our framework includes a robust and systematic scheme to ensure the reliability of the crowdsourced results. Using 1,008 source images and distorted versions obtained with JPEG and BPG compression, we apply our crowdsourcing framework to build the largest PJND dataset, KonJND-1k (Konstanz just noticeable difference 1k dataset). A total of 503 workers participated in the study, yielding 61,030 PJND samples that resulted in an average of 42 samples per source image. The KonJND-1k dataset is available at http://database.mmsp-kn.de/konjnd-1k-database.html.</dcterms:abstract>
    <dcterms:title>Large-scale crowdsourced subjective assessment of picturewise just noticeable difference</dcterms:title>
    <dc:contributor>Lin, Hanhe</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen