Publikation:

From fish schools to primate societies : The dynamics of collective movement in animal groups

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2016

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Dissertation anderer Hochschule
Publikationsstatus
Published

Erschienen in

Zusammenfassung

Animals that live in groups face a dual challenge of e↵ectively exploiting their environment while at the same time maintaining cohesion with other group members. Maintaining cohesion requires group members to come to consensus about when and where to move, despite the fact that they may not always agree. In this thesis, I investigate how individuals in groups make movement decisions, and how these individual decisions scale up to group-level properties. Using a laboratory experiment with golden shiners (Notemigonus crysoleucas), I first investigate the interaction network over which information spreads, finding that decisions are better predicted by whom individuals can see rather than whom they are close to, with potential consequences for the global spread of information (Chapter 2). I then investigate collective movement behavior in the wild using high-resolution GPS data from members of a troop of olive baboons (Papio anubis). I first show that baboons are consistent in the spatial positions they occupy within the group, and that the observed patterns may be understood based on a very simple mechanism by which individuals maintain cohesion with di↵erent numbers of their neighbors (Chapter 3). By quantifying how group members move relative to one another, I then show that baboon movement decisions are consistent with a shared decision-making process, rather than despotic leadership by dominant individuals, and that the patterns of decision-making are consistent with simple models of collective motion (Chapter 4). Finally, by incorporating a fine-scale, three-dimensional reconstruction of the habitat through which the baboons move, I show that habitat structure, in addition to social factors, also exerts an important influence on individual movement decisions, resulting in changes in the emergent structure and movement of the group (Chapter 5). Taken together, these results highlight that by combining high-resolution animal tracking, remote sensing, and analytical methods, we can begin to extend our understanding of collective animal movement from laboratory studies to complex animal societies living in the wild.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690STRANDBURG-PESHKIN, Ariana, 2016. From fish schools to primate societies : The dynamics of collective movement in animal groups [Dissertation]. Princeton, NJ: Princeton University
BibTex
@phdthesis{StrandburgPeshkin2016schoo-46048,
  year={2016},
  title={From fish schools to primate societies : The dynamics of collective movement in animal groups},
  address={Princeton, NJ},
  school={Princeton University},
  url={https://dataspace.princeton.edu/jspui/handle/88435/dsp01z316q4081},
  author={Strandburg-Peshkin, Ariana}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46048">
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Strandburg-Peshkin, Ariana</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-06-19T09:23:12Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-06-19T09:23:12Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/46048"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:abstract xml:lang="eng">Animals that live in groups face a dual challenge of e↵ectively exploiting their environment while at the same time maintaining cohesion with other group members. Maintaining cohesion requires group members to come to consensus about when and where to move, despite the fact that they may not always agree. In this thesis, I investigate how individuals in groups make movement decisions, and how these individual decisions scale up to group-level properties. Using a laboratory experiment with golden shiners (Notemigonus crysoleucas), I first investigate the interaction network over which information spreads, finding that decisions are better predicted by whom individuals can see rather than whom they are close to, with potential consequences for the global spread of information (Chapter 2). I then investigate collective movement behavior in the wild using high-resolution GPS data from members of a troop of olive baboons (Papio anubis). I first show that baboons are consistent in the spatial positions they occupy within the group, and that the observed patterns may be understood based on a very simple mechanism by which individuals maintain cohesion with di↵erent numbers of their neighbors (Chapter 3). By quantifying how group members move relative to one another, I then show that baboon movement decisions are consistent with a shared decision-making process, rather than despotic leadership by dominant individuals, and that the patterns of decision-making are consistent with simple models of collective motion (Chapter 4). Finally, by incorporating a fine-scale, three-dimensional reconstruction of the habitat through which the baboons move, I show that habitat structure, in addition to social factors, also exerts an important influence on individual movement decisions, resulting in changes in the emergent structure and movement of the group (Chapter 5). Taken together, these results highlight that by combining high-resolution animal tracking, remote sensing, and analytical methods, we can begin to extend our understanding of collective animal movement from laboratory studies to complex animal societies living in the wild.</dcterms:abstract>
    <dc:creator>Strandburg-Peshkin, Ariana</dc:creator>
    <dcterms:title>From fish schools to primate societies : The dynamics of collective movement in animal groups</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2016</dcterms:issued>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt

Prüfdatum der URL

2019-06-19

Prüfungsdatum der Dissertation

Hochschulschriftenvermerk
Princeton, NJ, Princeton University, Diss., 2016
Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen