Publikation:

Drug-Target identification in COVID-19 disease mechanisms using computational systems biology approaches

Lade...
Vorschaubild

Dateien

Niarakis_2-5q540734qht31.pdf
Niarakis_2-5q540734qht31.pdfGröße: 5.98 MBDownloads: 21

Datum

2024

Autor:innen

Niarakis, Anna
Ostaszewski, Marek
Mazein, Alexander
Kuperstein, Inna
Kutmon, Martina
Gillespie, Marc E.
Funahashi, Akira
et al.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz
oops

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Frontiers in Immunology. Frontiers. 2024, 14, 1282859. eISSN 1664-3224. Verfügbar unter: doi: 10.3389/fimmu.2023.1282859

Zusammenfassung

The COVID-19 Disease Map project is a large-scale community effort uniting 277 scientists from 130 Institutions around the globe. We use high-quality, mechanistic content describing SARS-CoV-2-host interactions and develop interoperable bioinformatic pipelines for novel target identification and drug repurposing. Extensive community work allowed an impressive step forward in building interfaces between Systems Biology tools and platforms.Our framework can link biomolecules from omics data analysis and computational modelling to dysregulated pathways in a cell-, tissue-or patient-specific manner. Drug repurposing using text mining and AI-assisted analysis identified potential drugs, chemicals and microRNAs that could target the identified key factors. Results revealed drugs already tested for anti-COVID-19 efficacy, providing a mechanistic context for their mode of action, and drugs already in clinical trials for treating other diseases, never tested against COVID-19. The key advance is that the proposed framework is versatile and expandable, offering a significant upgrade in the arsenal for virus-host interactions and other complex pathologies.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

SARS-CoV-2, Systems Biology, Disease maps, mechanistic models, dynamic models, Systems Medicine, large-scale community effort

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690NIARAKIS, Anna, Marek OSTASZEWSKI, Alexander MAZEIN, Inna KUPERSTEIN, Martina KUTMON, Marc E. GILLESPIE, Akira FUNAHASHI, Michael AICHEM, Karsten KLEIN, Falk SCHREIBER, 2024. Drug-Target identification in COVID-19 disease mechanisms using computational systems biology approaches. In: Frontiers in Immunology. Frontiers. 2024, 14, 1282859. eISSN 1664-3224. Verfügbar unter: doi: 10.3389/fimmu.2023.1282859
BibTex
@article{Niarakis2024-02-13DrugT-69067,
  year={2024},
  doi={10.3389/fimmu.2023.1282859},
  title={Drug-Target identification in COVID-19 disease mechanisms using computational systems biology approaches},
  volume={14},
  journal={Frontiers in Immunology},
  author={Niarakis, Anna and Ostaszewski, Marek and Mazein, Alexander and Kuperstein, Inna and Kutmon, Martina and Gillespie, Marc E. and Funahashi, Akira and Aichem, Michael and Klein, Karsten and Schreiber, Falk},
  note={Article Number: 1282859}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/69067">
    <dc:contributor>Klein, Karsten</dc:contributor>
    <dc:contributor>Aichem, Michael</dc:contributor>
    <dc:creator>Niarakis, Anna</dc:creator>
    <dc:contributor>Gillespie, Marc E.</dc:contributor>
    <dc:creator>Ostaszewski, Marek</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-01-16T11:33:16Z</dc:date>
    <dc:contributor>Kutmon, Martina</dc:contributor>
    <dc:creator>Mazein, Alexander</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69067/1/Niarakis_2-5q540734qht31.pdf"/>
    <dc:contributor>Mazein, Alexander</dc:contributor>
    <dc:creator>Kuperstein, Inna</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Schreiber, Falk</dc:creator>
    <dc:creator>Aichem, Michael</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Ostaszewski, Marek</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Kuperstein, Inna</dc:contributor>
    <dc:creator>Kutmon, Martina</dc:creator>
    <dc:creator>Funahashi, Akira</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dcterms:title>Drug-Target identification in COVID-19 disease mechanisms using computational systems biology approaches</dcterms:title>
    <dcterms:abstract>The COVID-19 Disease Map project is a large-scale community effort uniting 277 scientists from 130 Institutions around the globe. We use high-quality, mechanistic content describing SARS-CoV-2-host interactions and develop interoperable bioinformatic pipelines for novel target identification and drug repurposing. Extensive community work allowed an impressive step forward in building interfaces between Systems Biology tools and platforms.Our framework can link biomolecules from omics data analysis and computational modelling to dysregulated pathways in a cell-, tissue-or patient-specific manner. Drug repurposing using text mining and AI-assisted analysis identified potential drugs, chemicals and microRNAs that could target the identified key factors. Results revealed drugs already tested for anti-COVID-19 efficacy, providing a mechanistic context for their mode of action, and drugs already in clinical trials for treating other diseases, never tested against COVID-19. The key advance is that the proposed framework is versatile and expandable, offering a significant upgrade in the arsenal for virus-host interactions and other complex pathologies.</dcterms:abstract>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69067/1/Niarakis_2-5q540734qht31.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/69067"/>
    <dcterms:issued>2024-02-13</dcterms:issued>
    <dc:creator>Klein, Karsten</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-01-16T11:33:16Z</dcterms:available>
    <dc:contributor>Niarakis, Anna</dc:contributor>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Schreiber, Falk</dc:contributor>
    <dc:creator>Gillespie, Marc E.</dc:creator>
    <dc:contributor>Funahashi, Akira</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen