Publikation: The Matter of Chance : Auditing Web Search Results Related to the 2020 U.S. Presidential Primary Elections Across Six Search Engines
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We examine how six search engines filter and rank information in relation to the queries on the U.S. 2020 presidential primary elections under the default—that is nonpersonalized—conditions. For that, we utilize an algorithmic auditing methodology that uses virtual agents to conduct large-scale analysis of algorithmic information curation in a controlled environment. Specifically, we look at the text search results for “us elections,” “donald trump,” “joe biden,” “bernie sanders” queries on Google, Baidu, Bing, DuckDuckGo, Yahoo, and Yandex, during the 2020 primaries. Our findings indicate substantial differences in the search results between search engines and multiple discrepancies within the results generated for different agents using the same search engine. It highlights that whether users see certain information is decided by chance due to the inherent randomization of search results. We also find that some search engines prioritize different categories of information sources with respect to specific candidates. These observations demonstrate that algorithmic curation of political information can create information inequalities between the search engine users even under nonpersonalized conditions. Such inequalities are particularly troubling considering that search results are highly trusted by the public and can shift the opinions of undecided voters as demonstrated by previous research.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
URMAN, Aleksandra, Mykola MAKHORTYKH, Roberto ULLOA, 2022. The Matter of Chance : Auditing Web Search Results Related to the 2020 U.S. Presidential Primary Elections Across Six Search Engines. In: Social Science Computer Review. Sage. 2022, 40(5), pp. 1323-1339. ISSN 0894-4393. eISSN 1552-8286. Available under: doi: 10.1177/08944393211006863BibTex
@article{Urman2022Matte-67822, year={2022}, doi={10.1177/08944393211006863}, title={The Matter of Chance : Auditing Web Search Results Related to the 2020 U.S. Presidential Primary Elections Across Six Search Engines}, number={5}, volume={40}, issn={0894-4393}, journal={Social Science Computer Review}, pages={1323--1339}, author={Urman, Aleksandra and Makhortykh, Mykola and Ulloa, Roberto} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/67822"> <dcterms:title>The Matter of Chance : Auditing Web Search Results Related to the 2020 U.S. Presidential Primary Elections Across Six Search Engines</dcterms:title> <dcterms:abstract>We examine how six search engines filter and rank information in relation to the queries on the U.S. 2020 presidential primary elections under the default—that is nonpersonalized—conditions. For that, we utilize an algorithmic auditing methodology that uses virtual agents to conduct large-scale analysis of algorithmic information curation in a controlled environment. Specifically, we look at the text search results for “us elections,” “donald trump,” “joe biden,” “bernie sanders” queries on Google, Baidu, Bing, DuckDuckGo, Yahoo, and Yandex, during the 2020 primaries. Our findings indicate substantial differences in the search results between search engines and multiple discrepancies within the results generated for different agents using the same search engine. It highlights that whether users see certain information is decided by chance due to the inherent randomization of search results. We also find that some search engines prioritize different categories of information sources with respect to specific candidates. These observations demonstrate that algorithmic curation of political information can create information inequalities between the search engine users even under nonpersonalized conditions. Such inequalities are particularly troubling considering that search results are highly trusted by the public and can shift the opinions of undecided voters as demonstrated by previous research.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dc:contributor>Urman, Aleksandra</dc:contributor> <dc:contributor>Makhortykh, Mykola</dc:contributor> <dcterms:issued>2022</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dc:creator>Makhortykh, Mykola</dc:creator> <dc:creator>Ulloa, Roberto</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-09-19T08:47:52Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/67822"/> <dc:contributor>Ulloa, Roberto</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Urman, Aleksandra</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-09-19T08:47:52Z</dcterms:available> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>