Publikation:

The Matter of Chance : Auditing Web Search Results Related to the 2020 U.S. Presidential Primary Elections Across Six Search Engines

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2022

Autor:innen

Urman, Aleksandra
Makhortykh, Mykola

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Social Science Computer Review. Sage. 2022, 40(5), pp. 1323-1339. ISSN 0894-4393. eISSN 1552-8286. Available under: doi: 10.1177/08944393211006863

Zusammenfassung

We examine how six search engines filter and rank information in relation to the queries on the U.S. 2020 presidential primary elections under the default—that is nonpersonalized—conditions. For that, we utilize an algorithmic auditing methodology that uses virtual agents to conduct large-scale analysis of algorithmic information curation in a controlled environment. Specifically, we look at the text search results for “us elections,” “donald trump,” “joe biden,” “bernie sanders” queries on Google, Baidu, Bing, DuckDuckGo, Yahoo, and Yandex, during the 2020 primaries. Our findings indicate substantial differences in the search results between search engines and multiple discrepancies within the results generated for different agents using the same search engine. It highlights that whether users see certain information is decided by chance due to the inherent randomization of search results. We also find that some search engines prioritize different categories of information sources with respect to specific candidates. These observations demonstrate that algorithmic curation of political information can create information inequalities between the search engine users even under nonpersonalized conditions. Such inequalities are particularly troubling considering that search results are highly trusted by the public and can shift the opinions of undecided voters as demonstrated by previous research.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
320 Politik

Schlagwörter

search engines, web search elections, U.S. elections, algorithmic auditing

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690URMAN, Aleksandra, Mykola MAKHORTYKH, Roberto ULLOA, 2022. The Matter of Chance : Auditing Web Search Results Related to the 2020 U.S. Presidential Primary Elections Across Six Search Engines. In: Social Science Computer Review. Sage. 2022, 40(5), pp. 1323-1339. ISSN 0894-4393. eISSN 1552-8286. Available under: doi: 10.1177/08944393211006863
BibTex
@article{Urman2022Matte-67822,
  year={2022},
  doi={10.1177/08944393211006863},
  title={The Matter of Chance : Auditing Web Search Results Related to the 2020 U.S. Presidential Primary Elections Across Six Search Engines},
  number={5},
  volume={40},
  issn={0894-4393},
  journal={Social Science Computer Review},
  pages={1323--1339},
  author={Urman, Aleksandra and Makhortykh, Mykola and Ulloa, Roberto}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/67822">
    <dcterms:title>The Matter of Chance : Auditing Web Search Results Related to the 2020 U.S. Presidential Primary Elections Across Six Search Engines</dcterms:title>
    <dcterms:abstract>We examine how six search engines filter and rank information in relation to the queries on the U.S. 2020 presidential primary elections under the default—that is nonpersonalized—conditions. For that, we utilize an algorithmic auditing methodology that uses virtual agents to conduct large-scale analysis of algorithmic information curation in a controlled environment. Specifically, we look at the text search results for “us elections,” “donald trump,” “joe biden,” “bernie sanders” queries on Google, Baidu, Bing, DuckDuckGo, Yahoo, and Yandex, during the 2020 primaries. Our findings indicate substantial differences in the search results between search engines and multiple discrepancies within the results generated for different agents using the same search engine. It highlights that whether users see certain information is decided by chance due to the inherent randomization of search results. We also find that some search engines prioritize different categories of information sources with respect to specific candidates. These observations demonstrate that algorithmic curation of political information can create information inequalities between the search engine users even under nonpersonalized conditions. Such inequalities are particularly troubling considering that search results are highly trusted by the public and can shift the opinions of undecided voters as demonstrated by previous research.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:contributor>Urman, Aleksandra</dc:contributor>
    <dc:contributor>Makhortykh, Mykola</dc:contributor>
    <dcterms:issued>2022</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:creator>Makhortykh, Mykola</dc:creator>
    <dc:creator>Ulloa, Roberto</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-09-19T08:47:52Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/67822"/>
    <dc:contributor>Ulloa, Roberto</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Urman, Aleksandra</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-09-19T08:47:52Z</dcterms:available>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen