Publikation: Inference in VARs with Conditional Heteroskedasticity of Unknown Form
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We derive a framework for asymptotically valid inference in stable vector autoregressive (VAR) models with conditional heteroskedasticity of unknown form. We prove a joint central limit theorem for the VAR slope parameter and innovation covariance parameter estimators and address bootstrap inference as well. Our results are important for correct inference on VAR statistics that depend both on the VAR slope and the variance parameters as e.g. in structural impulse response functions (IRFs). We also show that wild and pairwise bootstrap schemes fail in the presence of conditional heteroskedasticity if inference on (functions) of the unconditional variance parameters is of interest because they do not correctly replicate the relevant fourth moments' structure of the error terms. In contrast, the residual-based moving block bootstrap results in asymptotically valid inference. We illustrate the practical implications of our theoretical results by providing simulation evidence on the finite sample properties of different inference methods for IRFs. Our results point out that estimation uncertainty may increase dramatically in the presence of conditional heteroskedasticity. Moreover, most inference methods are likely to understate the true estimation uncertainty substantially in finite samples.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BRÜGGEMANN, Ralf, Carsten JENTSCH, Carsten TRENKLER, 2014. Inference in VARs with Conditional Heteroskedasticity of Unknown FormBibTex
@techreport{Bruggemann2014Infer-29207, year={2014}, series={Working Paper Series / Department of Economics}, title={Inference in VARs with Conditional Heteroskedasticity of Unknown Form}, number={2014-13}, url={http://www.wiwi.uni-konstanz.de/workingpaperseries/WP_13_Brueggemann-Jentsch-Trenkler_2014.pdf}, author={Brüggemann, Ralf and Jentsch, Carsten and Trenkler, Carsten} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29207"> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Brüggemann, Ralf</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <dc:contributor>Jentsch, Carsten</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-11-03T09:50:21Z</dcterms:available> <dc:language>eng</dc:language> <dcterms:title>Inference in VARs with Conditional Heteroskedasticity of Unknown Form</dcterms:title> <dc:rights>terms-of-use</dc:rights> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <dc:contributor>Trenkler, Carsten</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29207/3/Brueggemann_0-257706.pdf"/> <dcterms:abstract xml:lang="eng">We derive a framework for asymptotically valid inference in stable vector autoregressive (VAR) models with conditional heteroskedasticity of unknown form. We prove a joint central limit theorem for the VAR slope parameter and innovation covariance parameter estimators and address bootstrap inference as well. Our results are important for correct inference on VAR statistics that depend both on the VAR slope and the variance parameters as e.g. in structural impulse response functions (IRFs). We also show that wild and pairwise bootstrap schemes fail in the presence of conditional heteroskedasticity if inference on (functions) of the unconditional variance parameters is of interest because they do not correctly replicate the relevant fourth moments' structure of the error terms. In contrast, the residual-based moving block bootstrap results in asymptotically valid inference. We illustrate the practical implications of our theoretical results by providing simulation evidence on the finite sample properties of different inference methods for IRFs. Our results point out that estimation uncertainty may increase dramatically in the presence of conditional heteroskedasticity. Moreover, most inference methods are likely to understate the true estimation uncertainty substantially in finite samples.</dcterms:abstract> <dc:creator>Trenkler, Carsten</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29207/3/Brueggemann_0-257706.pdf"/> <dcterms:issued>2014</dcterms:issued> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29207"/> <dc:creator>Jentsch, Carsten</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Brüggemann, Ralf</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-11-03T09:50:21Z</dc:date> </rdf:Description> </rdf:RDF>