Publikation:

Anomaly detection for visual analytics of power consumption data

Lade...
Vorschaubild

Dateien

Janetzko_262172.pdf
Janetzko_262172.pdfGröße: 2.06 MBDownloads: 1579

Datum

2014

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Computers & Graphics. 2014, 38, pp. 27-37. ISSN 0097-8493. Available under: doi: 10.1016/j.cag.2013.10.006

Zusammenfassung

Commercial buildings are significant consumers of electrical power. Also, energy expenses are an increasing cost factor. Many companies therefore want to save money and reduce their power usage. Building administrators have to first understand the power consumption behavior, before they can devise strategies to save energy. Second, sudden unexpected changes in power consumption may hint at device failures of critical technical infrastructure. The goal of our research is to enable the analyst to understand the power consumption behavior and to be aware of unexpected power consumption values. In this paper, we introduce a novel unsupervised anomaly detection algorithm and visualize the resulting anomaly scores to guide the analyst to important time points. Different possibilities for visualizing the power usage time series are presented, combined with a discussion of the design choices to encode the anomaly values. Our methods are applied to real-world time series of power consumption, logged in a hierarchical sensor network.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690JANETZKO, Halldor, Florian STOFFEL, Sebastian MITTELSTÄDT, Daniel A. KEIM, 2014. Anomaly detection for visual analytics of power consumption data. In: Computers & Graphics. 2014, 38, pp. 27-37. ISSN 0097-8493. Available under: doi: 10.1016/j.cag.2013.10.006
BibTex
@article{Janetzko2014Anoma-26217,
  year={2014},
  doi={10.1016/j.cag.2013.10.006},
  title={Anomaly detection for visual analytics of power consumption data},
  volume={38},
  issn={0097-8493},
  journal={Computers & Graphics},
  pages={27--37},
  author={Janetzko, Halldor and Stoffel, Florian and Mittelstädt, Sebastian and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/26217">
    <dc:contributor>Stoffel, Florian</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-05T09:00:55Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26217/2/Janetzko_262172.pdf"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-05T09:00:55Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Anomaly detection for visual analytics of power consumption data</dcterms:title>
    <dc:contributor>Mittelstädt, Sebastian</dc:contributor>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:issued>2014</dcterms:issued>
    <dcterms:bibliographicCitation>Computers &amp; Graphics ; 38 (2014). - S. 27-37</dcterms:bibliographicCitation>
    <dc:creator>Stoffel, Florian</dc:creator>
    <dcterms:abstract xml:lang="eng">Commercial buildings are significant consumers of electrical power. Also, energy expenses are an increasing cost factor. Many companies therefore want to save money and reduce their power usage. Building administrators have to first understand the power consumption behavior, before they can devise strategies to save energy. Second, sudden unexpected changes in power consumption may hint at device failures of critical technical infrastructure. The goal of our research is to enable the analyst to understand the power consumption behavior and to be aware of unexpected power consumption values. In this paper, we introduce a novel unsupervised anomaly detection algorithm and visualize the resulting anomaly scores to guide the analyst to important time points. Different possibilities for visualizing the power usage time series are presented, combined with a discussion of the design choices to encode the anomaly values. Our methods are applied to real-world time series of power consumption, logged in a hierarchical sensor network.</dcterms:abstract>
    <dc:contributor>Janetzko, Halldor</dc:contributor>
    <dc:creator>Mittelstädt, Sebastian</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/26217"/>
    <dc:creator>Janetzko, Halldor</dc:creator>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26217/2/Janetzko_262172.pdf"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen