Publikation:

Accelerometer-based predictions of behaviour elucidate factors affecting the daily activity patterns of spotted hyenas

Lade...
Vorschaubild

Dateien

Minasandra_-2-8z8uh7n51mym7.pdf
Minasandra_-2-8z8uh7n51mym7.pdfGröße: 2.38 MBDownloads: 92

Datum

2023

Autor:innen

Jensen, Frants H.
Gersick, Andrew S.
Holekamp, Kay E.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Link zur Lizenz
oops

Angaben zur Forschungsförderung

U.S. National Science Foundation (NSF): IOS1755089
U.S. National Science Foundation (NSF): OIAO939454
U.S. National Science Foundation (NSF): OISE1853934
Deutsche Forschungsgemeinschaft (DFG): EXC 2117-422037984

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Royal Society Open Science. The Royal Society. 2023, 10(11). eISSN 2054-5703. Available under: doi: 10.1098/rsos.230750

Zusammenfassung

Animal activity patterns are highly variable and influenced by internal and external factors, including social processes. Quantifying activity patterns in natural settings can be challenging, as it is difficult to monitor animals over long time periods. Here, we developed and validated a machine-learning-based classifier to identify behavioural states from accelerometer data of wild spotted hyenas (Crocuta crocuta) , social carnivores that live in large fission–fusion societies. By combining this classifier with continuous collar-based accelerometer data from five hyenas, we generated a complete record of activity patterns over more than one month. We used these continuous behavioural sequences to investigate how past activity, individual idiosyncrasies, and social synchronization influence hyena activity patterns. We found that hyenas exhibit characteristic crepuscular-nocturnal daily activity patterns. Time spent active was independent of activity level on previous days, suggesting that hyenas do not show activity compensation. We also found limited evidence for an effect of individual identity on activity, and showed that pairs of hyenas who synchronized their activity patterns must have spent more time together. This study sheds light on the patterns and drivers of activity in spotted hyena societies, and also provides a useful tool for quantifying behavioural sequences from accelerometer data.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

social entrainment, daily activity pattern, accelerometer, circadian rhythm, spotted hyena, behavioural classification, biologging

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690MINASANDRA MADHAVARANGA, Pranav, Frants H. JENSEN, Andrew S. GERSICK, Kay E. HOLEKAMP, Eli D. STRAUSS, Ariana STRANDBURG-PESHKIN, 2023. Accelerometer-based predictions of behaviour elucidate factors affecting the daily activity patterns of spotted hyenas. In: Royal Society Open Science. The Royal Society. 2023, 10(11). eISSN 2054-5703. Available under: doi: 10.1098/rsos.230750
BibTex
@article{MinasandraMadhavaranga2023-11Accel-68851,
  year={2023},
  doi={10.1098/rsos.230750},
  title={Accelerometer-based predictions of behaviour elucidate factors affecting the daily activity patterns of spotted hyenas},
  number={11},
  volume={10},
  journal={Royal Society Open Science},
  author={Minasandra Madhavaranga, Pranav and Jensen, Frants H. and Gersick, Andrew S. and Holekamp, Kay E. and Strauss, Eli D. and Strandburg-Peshkin, Ariana}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/68851">
    <dc:creator>Minasandra Madhavaranga, Pranav</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/68851/1/Minasandra_-2-8z8uh7n51mym7.pdf"/>
    <dcterms:issued>2023-11</dcterms:issued>
    <dc:creator>Holekamp, Kay E.</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-12-21T12:06:24Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Strandburg-Peshkin, Ariana</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dc:creator>Gersick, Andrew S.</dc:creator>
    <dc:contributor>Jensen, Frants H.</dc:contributor>
    <dc:contributor>Gersick, Andrew S.</dc:contributor>
    <dcterms:title>Accelerometer-based predictions of behaviour elucidate factors affecting the daily activity patterns of spotted hyenas</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Minasandra Madhavaranga, Pranav</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/68851/1/Minasandra_-2-8z8uh7n51mym7.pdf"/>
    <dc:creator>Jensen, Frants H.</dc:creator>
    <dc:contributor>Strauss, Eli D.</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dc:contributor>Holekamp, Kay E.</dc:contributor>
    <dc:creator>Strauss, Eli D.</dc:creator>
    <dc:creator>Strandburg-Peshkin, Ariana</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/68851"/>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-12-21T12:06:24Z</dcterms:available>
    <dcterms:abstract>Animal activity patterns are highly variable and influenced by internal and external factors, including social processes. Quantifying activity patterns in natural settings can be challenging, as it is difficult to monitor animals over long time periods. Here, we developed and validated a machine-learning-based classifier to identify behavioural states from accelerometer data of wild spotted hyenas       (Crocuta crocuta)       , social carnivores that live in large fission–fusion societies. By combining this classifier with continuous collar-based accelerometer data from five hyenas, we generated a complete record of activity patterns over more than one month. We used these continuous behavioural sequences to investigate how past activity, individual idiosyncrasies, and social synchronization influence hyena activity patterns. We found that hyenas exhibit characteristic crepuscular-nocturnal daily activity patterns. Time spent active was independent of activity level on previous days, suggesting that hyenas do not show activity compensation. We also found limited evidence for an effect of individual identity on activity, and showed that pairs of hyenas who synchronized their activity patterns must have spent more time together. This study sheds light on the patterns and drivers of activity in spotted hyena societies, and also provides a useful tool for quantifying behavioural sequences from accelerometer data.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen