Publikation: Accelerometer-based predictions of behaviour elucidate factors affecting the daily activity patterns of spotted hyenas
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
U.S. National Science Foundation (NSF): OIAO939454
U.S. National Science Foundation (NSF): OISE1853934
Deutsche Forschungsgemeinschaft (DFG): EXC 2117-422037984
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Animal activity patterns are highly variable and influenced by internal and external factors, including social processes. Quantifying activity patterns in natural settings can be challenging, as it is difficult to monitor animals over long time periods. Here, we developed and validated a machine-learning-based classifier to identify behavioural states from accelerometer data of wild spotted hyenas (Crocuta crocuta) , social carnivores that live in large fission–fusion societies. By combining this classifier with continuous collar-based accelerometer data from five hyenas, we generated a complete record of activity patterns over more than one month. We used these continuous behavioural sequences to investigate how past activity, individual idiosyncrasies, and social synchronization influence hyena activity patterns. We found that hyenas exhibit characteristic crepuscular-nocturnal daily activity patterns. Time spent active was independent of activity level on previous days, suggesting that hyenas do not show activity compensation. We also found limited evidence for an effect of individual identity on activity, and showed that pairs of hyenas who synchronized their activity patterns must have spent more time together. This study sheds light on the patterns and drivers of activity in spotted hyena societies, and also provides a useful tool for quantifying behavioural sequences from accelerometer data.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
MINASANDRA MADHAVARANGA, Pranav, Frants H. JENSEN, Andrew S. GERSICK, Kay E. HOLEKAMP, Eli D. STRAUSS, Ariana STRANDBURG-PESHKIN, 2023. Accelerometer-based predictions of behaviour elucidate factors affecting the daily activity patterns of spotted hyenas. In: Royal Society Open Science. The Royal Society. 2023, 10(11). eISSN 2054-5703. Available under: doi: 10.1098/rsos.230750BibTex
@article{MinasandraMadhavaranga2023-11Accel-68851, year={2023}, doi={10.1098/rsos.230750}, title={Accelerometer-based predictions of behaviour elucidate factors affecting the daily activity patterns of spotted hyenas}, number={11}, volume={10}, journal={Royal Society Open Science}, author={Minasandra Madhavaranga, Pranav and Jensen, Frants H. and Gersick, Andrew S. and Holekamp, Kay E. and Strauss, Eli D. and Strandburg-Peshkin, Ariana} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/68851"> <dc:creator>Minasandra Madhavaranga, Pranav</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/68851/1/Minasandra_-2-8z8uh7n51mym7.pdf"/> <dcterms:issued>2023-11</dcterms:issued> <dc:creator>Holekamp, Kay E.</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-12-21T12:06:24Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:contributor>Strandburg-Peshkin, Ariana</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dc:creator>Gersick, Andrew S.</dc:creator> <dc:contributor>Jensen, Frants H.</dc:contributor> <dc:contributor>Gersick, Andrew S.</dc:contributor> <dcterms:title>Accelerometer-based predictions of behaviour elucidate factors affecting the daily activity patterns of spotted hyenas</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Minasandra Madhavaranga, Pranav</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/68851/1/Minasandra_-2-8z8uh7n51mym7.pdf"/> <dc:creator>Jensen, Frants H.</dc:creator> <dc:contributor>Strauss, Eli D.</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dc:contributor>Holekamp, Kay E.</dc:contributor> <dc:creator>Strauss, Eli D.</dc:creator> <dc:creator>Strandburg-Peshkin, Ariana</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/68851"/> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-12-21T12:06:24Z</dcterms:available> <dcterms:abstract>Animal activity patterns are highly variable and influenced by internal and external factors, including social processes. Quantifying activity patterns in natural settings can be challenging, as it is difficult to monitor animals over long time periods. Here, we developed and validated a machine-learning-based classifier to identify behavioural states from accelerometer data of wild spotted hyenas (Crocuta crocuta) , social carnivores that live in large fission–fusion societies. By combining this classifier with continuous collar-based accelerometer data from five hyenas, we generated a complete record of activity patterns over more than one month. We used these continuous behavioural sequences to investigate how past activity, individual idiosyncrasies, and social synchronization influence hyena activity patterns. We found that hyenas exhibit characteristic crepuscular-nocturnal daily activity patterns. Time spent active was independent of activity level on previous days, suggesting that hyenas do not show activity compensation. We also found limited evidence for an effect of individual identity on activity, and showed that pairs of hyenas who synchronized their activity patterns must have spent more time together. This study sheds light on the patterns and drivers of activity in spotted hyena societies, and also provides a useful tool for quantifying behavioural sequences from accelerometer data.</dcterms:abstract> </rdf:Description> </rdf:RDF>