Publikation:

NStreamAware : Real-Time visual analytics for data streams (VAST Challenge 2014 MC3)

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2014

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

MIN CHEN ..., , ed.. 2014 IEEE Conference on Visual Analytics Science and Technology (VAST) : Proceedings ; Paris, France, 9-14 October 2014. Piscataway, NJ: IEEE, 2014, pp. 373-374. ISBN 978-1-4799-6227-3. Available under: doi: 10.1109/VAST.2014.7042572

Zusammenfassung

To solve the VAST Challenge 2014 MC3 we use NStreamAware, which is our real-time visual analytics system to analyze data streams. We make use of various modern technologies like Apache Spark and others to provide high scalability and incorporate new technologies and show their use within visual analytics applications. Furthermore, we developed a web application, called NVisAware, to analyze and visualize data streams to help the analyst to focus on the most important time segments. We extracted socalled sliding slices, which are aggregated summaries calculated on a sliding window and represent them in a small-multiple like visualization containing various small visualizations (e.g., word clouds) to present an overview of the current time segment. We show how these techniques can be used to successfully solve the given tasks.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

IEEE Conference on Visual Analytics Science and Technology (VAST), 2014, 9. Okt. 2014 - 14. Okt. 2014, Paris
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690FISCHER, Fabian, 2014. NStreamAware : Real-Time visual analytics for data streams (VAST Challenge 2014 MC3). IEEE Conference on Visual Analytics Science and Technology (VAST), 2014. Paris, 9. Okt. 2014 - 14. Okt. 2014. In: MIN CHEN ..., , ed.. 2014 IEEE Conference on Visual Analytics Science and Technology (VAST) : Proceedings ; Paris, France, 9-14 October 2014. Piscataway, NJ: IEEE, 2014, pp. 373-374. ISBN 978-1-4799-6227-3. Available under: doi: 10.1109/VAST.2014.7042572
BibTex
@inproceedings{Fischer2014NStre-30122,
  year={2014},
  doi={10.1109/VAST.2014.7042572},
  title={NStreamAware : Real-Time visual analytics for data streams (VAST Challenge 2014 MC3)},
  isbn={978-1-4799-6227-3},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={2014 IEEE Conference on Visual Analytics Science and Technology (VAST) : Proceedings ; Paris, France, 9-14 October 2014},
  pages={373--374},
  editor={Min Chen ...},
  author={Fischer, Fabian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30122">
    <dc:contributor>Fischer, Fabian</dc:contributor>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2014</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-27T14:05:37Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-27T14:05:37Z</dc:date>
    <dc:creator>Fischer, Fabian</dc:creator>
    <dcterms:title>NStreamAware : Real-Time visual analytics for data streams (VAST Challenge 2014 MC3)</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">To solve the VAST Challenge 2014 MC3 we use NStreamAware, which is our real-time visual analytics system to analyze data streams. We make use of various modern technologies like Apache Spark and others to provide high scalability and incorporate new technologies and show their use within visual analytics applications. Furthermore, we developed a web application, called NVisAware, to analyze and visualize data streams to help the analyst to focus on the most important time segments. We extracted socalled sliding slices, which are aggregated summaries calculated on a sliding window and represent them in a small-multiple like visualization containing various small visualizations (e.g., word clouds) to present an overview of the current time segment. We show how these techniques can be used to successfully solve the given tasks.</dcterms:abstract>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30122"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen