Publikation: NStreamAware : Real-Time visual analytics for data streams (VAST Challenge 2014 MC3)
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
To solve the VAST Challenge 2014 MC3 we use NStreamAware, which is our real-time visual analytics system to analyze data streams. We make use of various modern technologies like Apache Spark and others to provide high scalability and incorporate new technologies and show their use within visual analytics applications. Furthermore, we developed a web application, called NVisAware, to analyze and visualize data streams to help the analyst to focus on the most important time segments. We extracted socalled sliding slices, which are aggregated summaries calculated on a sliding window and represent them in a small-multiple like visualization containing various small visualizations (e.g., word clouds) to present an overview of the current time segment. We show how these techniques can be used to successfully solve the given tasks.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
FISCHER, Fabian, 2014. NStreamAware : Real-Time visual analytics for data streams (VAST Challenge 2014 MC3). IEEE Conference on Visual Analytics Science and Technology (VAST), 2014. Paris, 9. Okt. 2014 - 14. Okt. 2014. In: MIN CHEN ..., , ed.. 2014 IEEE Conference on Visual Analytics Science and Technology (VAST) : Proceedings ; Paris, France, 9-14 October 2014. Piscataway, NJ: IEEE, 2014, pp. 373-374. ISBN 978-1-4799-6227-3. Available under: doi: 10.1109/VAST.2014.7042572BibTex
@inproceedings{Fischer2014NStre-30122, year={2014}, doi={10.1109/VAST.2014.7042572}, title={NStreamAware : Real-Time visual analytics for data streams (VAST Challenge 2014 MC3)}, isbn={978-1-4799-6227-3}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={2014 IEEE Conference on Visual Analytics Science and Technology (VAST) : Proceedings ; Paris, France, 9-14 October 2014}, pages={373--374}, editor={Min Chen ...}, author={Fischer, Fabian} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30122"> <dc:contributor>Fischer, Fabian</dc:contributor> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2014</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-27T14:05:37Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-27T14:05:37Z</dc:date> <dc:creator>Fischer, Fabian</dc:creator> <dcterms:title>NStreamAware : Real-Time visual analytics for data streams (VAST Challenge 2014 MC3)</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:abstract xml:lang="eng">To solve the VAST Challenge 2014 MC3 we use NStreamAware, which is our real-time visual analytics system to analyze data streams. We make use of various modern technologies like Apache Spark and others to provide high scalability and incorporate new technologies and show their use within visual analytics applications. Furthermore, we developed a web application, called NVisAware, to analyze and visualize data streams to help the analyst to focus on the most important time segments. We extracted socalled sliding slices, which are aggregated summaries calculated on a sliding window and represent them in a small-multiple like visualization containing various small visualizations (e.g., word clouds) to present an overview of the current time segment. We show how these techniques can be used to successfully solve the given tasks.</dcterms:abstract> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30122"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>