Publikation: Towers of complements to valuation rings and truncation closed embeddings of valued fields
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We study necessary and sufficient conditions for a valued field K with value group G and residue field k (with char K=char k) to admit a truncation closed embedding in the field of generalized power series k((G,f)) (with factor set f). We show that this is equivalent to the existence of a family (tower of complements) of k-subspaces of K which are complements of the (possibly fractional) ideals of the valuation ring, and satisfying certain natural conditions. If K is a Henselian field of characteristic 0 or, more generally, an algebraically maximal Kaplansky field, we give an intrinsic construction of such a family which does not rely on a given truncation closed embedding. We also show that towers of complements and truncation closed embeddings can be extended from an arbitrary field to at least one of its maximal immediate extensions.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
FORNASIERO, Antongiulio, Franz-Viktor KUHLMANN, Salma KUHLMANN, 2010. Towers of complements to valuation rings and truncation closed embeddings of valued fields. In: Journal of Algebra. 2010, 323(3), pp. 574-600. ISSN 0021-8693. Available under: doi: 10.1016/j.jalgebra.2009.11.023BibTex
@article{Fornasiero2010Tower-12753, year={2010}, doi={10.1016/j.jalgebra.2009.11.023}, title={Towers of complements to valuation rings and truncation closed embeddings of valued fields}, number={3}, volume={323}, issn={0021-8693}, journal={Journal of Algebra}, pages={574--600}, author={Fornasiero, Antongiulio and Kuhlmann, Franz-Viktor and Kuhlmann, Salma} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/12753"> <dc:contributor>Fornasiero, Antongiulio</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>Towers of complements to valuation rings and truncation closed embeddings of valued fields</dcterms:title> <dc:creator>Kuhlmann, Franz-Viktor</dc:creator> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Kuhlmann, Franz-Viktor</dc:contributor> <dcterms:issued>2010</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-07-15T08:51:12Z</dcterms:available> <dc:creator>Kuhlmann, Salma</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/12753"/> <dcterms:bibliographicCitation>First publ. in: Journal of Algebra 323 (2010), 3, pp. 574-600</dcterms:bibliographicCitation> <dcterms:abstract xml:lang="eng">We study necessary and sufficient conditions for a valued field K with value group G and residue field k (with char K=char k) to admit a truncation closed embedding in the field of generalized power series k((G,f)) (with factor set f). We show that this is equivalent to the existence of a family (tower of complements) of k-subspaces of K which are complements of the (possibly fractional) ideals of the valuation ring, and satisfying certain natural conditions. If K is a Henselian field of characteristic 0 or, more generally, an algebraically maximal Kaplansky field, we give an intrinsic construction of such a family which does not rely on a given truncation closed embedding. We also show that towers of complements and truncation closed embeddings can be extended from an arbitrary field to at least one of its maximal immediate extensions.</dcterms:abstract> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Kuhlmann, Salma</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-07-15T08:51:12Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Fornasiero, Antongiulio</dc:creator> </rdf:Description> </rdf:RDF>