Nested Formation of Calcium Carbonate Polymorphs in a Bacterial Surface Membrane with a Graded Nanoconfinement : An Evolutionary Strategy to Ensure Bacterial Survival
Nested Formation of Calcium Carbonate Polymorphs in a Bacterial Surface Membrane with a Graded Nanoconfinement : An Evolutionary Strategy to Ensure Bacterial Survival
Loading...
Date
2022
Authors
Simon, Paul
Pompe, Wolfgang
Gruner, Denise
Ostermann, Kai
Matys, Sabine
Vogel, Manja
Rödel, Gerhard
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published
Published in
ACS Biomaterials Science & Engineering ; 8 (2022), 2. - pp. 526-539. - ACS Publications. - ISSN 2373-9878. - eISSN 2373-9878
Abstract
It is the intention of this study to elucidate the nested formation of calcium carbonate polymorphs or polyamorphs in the different nanosized compartments. With these observations, it can be concluded how the bacteria can survive in a harsh environment with high calcium carbonate supersaturation. The mechanisms of calcium carbonate precipitation at the surface membrane and at the underlying cell wall membrane of the thermophilic soil bacterium Geobacillus stearothermophilus DSM 13240 have been revealed by high-resolution transmission electron microscopy and atomic force microscopy. In this Gram-positive bacterium, nanopores in the surface layer (S-layer) and in the supporting cell wall polymers are nucleation sites for metastable calcium carbonate polymorphs and polyamorphs. In order to observe the different metastable forms, various reaction times and a low reaction temperature (4 °C) have been chosen. Calcium carbonate polymorphs nucleate in the confinement of nanosized pores (⌀ 3-5 nm) of the S-layer. The hydrous crystalline calcium carbonate (ikaite) is formed initially with [110] as the favored growth direction. It transforms into the anhydrous metastable vaterite by a solid-state transition. In a following reaction step, calcite is precipitated, caused by dissolution of vaterite in the aqueous solution. In the larger pores of the cell wall (⌀ 20-50 nm), hydrated amorphous calcium carbonate is grown, which transforms into metastable monohydrocalcite, aragonite, or calcite. Due to the sequence of reaction steps via various metastable phases, the bacteria gain time for chipping the partially mineralized S-layer, and forming a fresh S-layer (characteristic growth time about 20 min). Thus, the bacteria can survive in solutions with high calcium carbonate supersaturation under the conditions of forced biomineralization.
Summary in another language
Subject (DDC)
540 Chemistry
Keywords
S-layer, peptidoglycan layer, nanostructures, calcium carbonate, forced biomineralization, HR-TEM
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
SIMON, Paul, Wolfgang POMPE, Denise GRUNER, Elena V. STURM, Kai OSTERMANN, Sabine MATYS, Manja VOGEL, Gerhard RÖDEL, 2022. Nested Formation of Calcium Carbonate Polymorphs in a Bacterial Surface Membrane with a Graded Nanoconfinement : An Evolutionary Strategy to Ensure Bacterial Survival. In: ACS Biomaterials Science & Engineering. ACS Publications. 8(2), pp. 526-539. ISSN 2373-9878. eISSN 2373-9878. Available under: doi: 10.1021/acsbiomaterials.1c01280BibTex
@article{Simon2022-02-14Neste-56355, year={2022}, doi={10.1021/acsbiomaterials.1c01280}, title={Nested Formation of Calcium Carbonate Polymorphs in a Bacterial Surface Membrane with a Graded Nanoconfinement : An Evolutionary Strategy to Ensure Bacterial Survival}, number={2}, volume={8}, issn={2373-9878}, journal={ACS Biomaterials Science & Engineering}, pages={526--539}, author={Simon, Paul and Pompe, Wolfgang and Gruner, Denise and Sturm, Elena V. and Ostermann, Kai and Matys, Sabine and Vogel, Manja and Rödel, Gerhard} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/56355"> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56355/1/Simon_2-aklyky1mv3or9.pdf"/> <dc:contributor>Sturm, Elena V.</dc:contributor> <dc:rights>Attribution 4.0 International</dc:rights> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dc:creator>Rödel, Gerhard</dc:creator> <dc:creator>Matys, Sabine</dc:creator> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:contributor>Simon, Paul</dc:contributor> <dc:creator>Ostermann, Kai</dc:creator> <dc:contributor>Ostermann, Kai</dc:contributor> <dcterms:title>Nested Formation of Calcium Carbonate Polymorphs in a Bacterial Surface Membrane with a Graded Nanoconfinement : An Evolutionary Strategy to Ensure Bacterial Survival</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/56355"/> <dc:creator>Sturm, Elena V.</dc:creator> <dc:language>eng</dc:language> <dc:contributor>Vogel, Manja</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-01-26T09:05:11Z</dcterms:available> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56355/1/Simon_2-aklyky1mv3or9.pdf"/> <dcterms:abstract xml:lang="eng">It is the intention of this study to elucidate the nested formation of calcium carbonate polymorphs or polyamorphs in the different nanosized compartments. With these observations, it can be concluded how the bacteria can survive in a harsh environment with high calcium carbonate supersaturation. The mechanisms of calcium carbonate precipitation at the surface membrane and at the underlying cell wall membrane of the thermophilic soil bacterium Geobacillus stearothermophilus DSM 13240 have been revealed by high-resolution transmission electron microscopy and atomic force microscopy. In this Gram-positive bacterium, nanopores in the surface layer (S-layer) and in the supporting cell wall polymers are nucleation sites for metastable calcium carbonate polymorphs and polyamorphs. In order to observe the different metastable forms, various reaction times and a low reaction temperature (4 °C) have been chosen. Calcium carbonate polymorphs nucleate in the confinement of nanosized pores (⌀ 3-5 nm) of the S-layer. The hydrous crystalline calcium carbonate (ikaite) is formed initially with [110] as the favored growth direction. It transforms into the anhydrous metastable vaterite by a solid-state transition. In a following reaction step, calcite is precipitated, caused by dissolution of vaterite in the aqueous solution. In the larger pores of the cell wall (⌀ 20-50 nm), hydrated amorphous calcium carbonate is grown, which transforms into metastable monohydrocalcite, aragonite, or calcite. Due to the sequence of reaction steps via various metastable phases, the bacteria gain time for chipping the partially mineralized S-layer, and forming a fresh S-layer (characteristic growth time about 20 min). Thus, the bacteria can survive in solutions with high calcium carbonate supersaturation under the conditions of forced biomineralization.</dcterms:abstract> <dc:creator>Vogel, Manja</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-01-26T09:05:11Z</dc:date> <dc:contributor>Pompe, Wolfgang</dc:contributor> <dcterms:issued>2022-02-14</dcterms:issued> <dc:contributor>Rödel, Gerhard</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Pompe, Wolfgang</dc:creator> <dc:creator>Gruner, Denise</dc:creator> <dc:contributor>Gruner, Denise</dc:contributor> <dc:contributor>Matys, Sabine</dc:contributor> <dc:creator>Simon, Paul</dc:creator> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Unknown