Publikation:

Obtaining sound intraclass correlation and variance estimates in three-level models : The role of sampling-strategies

Lade...
Vorschaubild

Dateien

Kerkhoff_2-axzd08fh9oo22.pdf
Kerkhoff_2-axzd08fh9oo22.pdfGröße: 2.29 MBDownloads: 190

Datum

2022

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Methodology. Leibniz Institute for Psychology Information (ZPID). 2022, 18(1), pp. 5-23. ISSN 1614-1881. eISSN 1614-2241. Available under: doi: 10.5964/meth.7265

Zusammenfassung

Three-level clustered data commonly occur in social and behavioral research and are prominently analyzed using multilevel modeling. The influence of the clustering on estimation results is assessed with the intraclass correlation coefficients (ICCs), which indicate the fraction of variance in the outcome located at each higher level. However, ICCs are prone to bias due to high requirements regarding the overall sample size and the sample size at each data level. In Monte Carlo simulations, we investigate how these sample characteristics influence the bias of the ICCs and statistical power of the variance components using robust ML-estimation. Results reveal considerable underestimation on Level-3 and the importance of the Level-3 sample size in combination with the ICC sizes. Based on our results, we derive concise sampling recommendations and discuss limits to our inferences.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
150 Psychologie

Schlagwörter

hierarchical linear modeling, Monte Carlo simulation, statistical power, sample size, bias

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KERKHOFF, Denny, Fridtjof W. NUSSBECK, 2022. Obtaining sound intraclass correlation and variance estimates in three-level models : The role of sampling-strategies. In: Methodology. Leibniz Institute for Psychology Information (ZPID). 2022, 18(1), pp. 5-23. ISSN 1614-1881. eISSN 1614-2241. Available under: doi: 10.5964/meth.7265
BibTex
@article{Kerkhoff2022Obtai-57243,
  year={2022},
  doi={10.5964/meth.7265},
  title={Obtaining sound intraclass correlation and variance estimates in three-level models : The role of sampling-strategies},
  number={1},
  volume={18},
  issn={1614-1881},
  journal={Methodology},
  pages={5--23},
  author={Kerkhoff, Denny and Nussbeck, Fridtjof W.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57243">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57243"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Nussbeck, Fridtjof W.</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57243/1/Kerkhoff_2-axzd08fh9oo22.pdf"/>
    <dc:creator>Kerkhoff, Denny</dc:creator>
    <dcterms:abstract xml:lang="eng">Three-level clustered data commonly occur in social and behavioral research and are prominently analyzed using multilevel modeling. The influence of the clustering on estimation results is assessed with the intraclass correlation coefficients (ICCs), which indicate the fraction of variance in the outcome located at each higher level. However, ICCs are prone to bias due to high requirements regarding the overall sample size and the sample size at each data level. In Monte Carlo simulations, we investigate how these sample characteristics influence the bias of the ICCs and statistical power of the variance components using robust ML-estimation. Results reveal considerable underestimation on Level-3 and the importance of the Level-3 sample size in combination with the ICC sizes. Based on our results, we derive concise sampling recommendations and discuss limits to our inferences.</dcterms:abstract>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57243/1/Kerkhoff_2-axzd08fh9oo22.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Nussbeck, Fridtjof W.</dc:contributor>
    <dc:contributor>Kerkhoff, Denny</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-04-08T13:39:28Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dcterms:title>Obtaining sound intraclass correlation and variance estimates in three-level models : The role of sampling-strategies</dcterms:title>
    <dcterms:issued>2022</dcterms:issued>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-04-08T13:39:28Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen