Publikation: Obtaining sound intraclass correlation and variance estimates in three-level models : The role of sampling-strategies
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Three-level clustered data commonly occur in social and behavioral research and are prominently analyzed using multilevel modeling. The influence of the clustering on estimation results is assessed with the intraclass correlation coefficients (ICCs), which indicate the fraction of variance in the outcome located at each higher level. However, ICCs are prone to bias due to high requirements regarding the overall sample size and the sample size at each data level. In Monte Carlo simulations, we investigate how these sample characteristics influence the bias of the ICCs and statistical power of the variance components using robust ML-estimation. Results reveal considerable underestimation on Level-3 and the importance of the Level-3 sample size in combination with the ICC sizes. Based on our results, we derive concise sampling recommendations and discuss limits to our inferences.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KERKHOFF, Denny, Fridtjof W. NUSSBECK, 2022. Obtaining sound intraclass correlation and variance estimates in three-level models : The role of sampling-strategies. In: Methodology. Leibniz Institute for Psychology Information (ZPID). 2022, 18(1), pp. 5-23. ISSN 1614-1881. eISSN 1614-2241. Available under: doi: 10.5964/meth.7265BibTex
@article{Kerkhoff2022Obtai-57243, year={2022}, doi={10.5964/meth.7265}, title={Obtaining sound intraclass correlation and variance estimates in three-level models : The role of sampling-strategies}, number={1}, volume={18}, issn={1614-1881}, journal={Methodology}, pages={5--23}, author={Kerkhoff, Denny and Nussbeck, Fridtjof W.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57243"> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57243"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Nussbeck, Fridtjof W.</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57243/1/Kerkhoff_2-axzd08fh9oo22.pdf"/> <dc:creator>Kerkhoff, Denny</dc:creator> <dcterms:abstract xml:lang="eng">Three-level clustered data commonly occur in social and behavioral research and are prominently analyzed using multilevel modeling. The influence of the clustering on estimation results is assessed with the intraclass correlation coefficients (ICCs), which indicate the fraction of variance in the outcome located at each higher level. However, ICCs are prone to bias due to high requirements regarding the overall sample size and the sample size at each data level. In Monte Carlo simulations, we investigate how these sample characteristics influence the bias of the ICCs and statistical power of the variance components using robust ML-estimation. Results reveal considerable underestimation on Level-3 and the importance of the Level-3 sample size in combination with the ICC sizes. Based on our results, we derive concise sampling recommendations and discuss limits to our inferences.</dcterms:abstract> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57243/1/Kerkhoff_2-axzd08fh9oo22.pdf"/> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Nussbeck, Fridtjof W.</dc:contributor> <dc:contributor>Kerkhoff, Denny</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-04-08T13:39:28Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <dcterms:title>Obtaining sound intraclass correlation and variance estimates in three-level models : The role of sampling-strategies</dcterms:title> <dcterms:issued>2022</dcterms:issued> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-04-08T13:39:28Z</dcterms:available> </rdf:Description> </rdf:RDF>