Applying human brain image processing methods to honeybee calcium image data

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2014
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
Frontiers in Neuroinformatics. 2014. ISSN 1662-5196. Available under: doi: 10.3389/conf.fninf.2014.08.00046
Zusammenfassung

Methods developed for analyzing human brain fMRI data have great potential for application to brain imaging data of different spatial and temporal scales, different imaging methods, and different species. In this work, we demonstrate a simple analysis of honeybee (Apis mellifera) brain image data using the Python programming language.

To our knowledge, this is the first application of human brain imaging techniques to an invertebrate. These techniques provide advantages when analyzing intra-individual phenomena, and invertebrates such as the honeybee offer the advantage of harboring a simpler, experimentally more accessible nervous system.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
570 Biowissenschaften, Biologie
Schlagwörter
Konferenz
5th INCF Congress of Neuroinformatics, 10. Sept. 2012 - 12. Sept. 2012, München
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690KLEIN, Arno, Satrajit GHOSH, Barrett KLEIN, Lisa RATH, C. Giovanni GALIZIA, Christoph KLEINEIDAM, 2014. Applying human brain image processing methods to honeybee calcium image data. 5th INCF Congress of Neuroinformatics. München, 10. Sept. 2012 - 12. Sept. 2012. In: Frontiers in Neuroinformatics. 2014. ISSN 1662-5196. Available under: doi: 10.3389/conf.fninf.2014.08.00046
BibTex
@inproceedings{Klein2014Apply-31820,
  year={2014},
  doi={10.3389/conf.fninf.2014.08.00046},
  title={Applying human brain image processing methods to honeybee calcium image data},
  issn={1662-5196},
  booktitle={Frontiers in Neuroinformatics},
  author={Klein, Arno and Ghosh, Satrajit and Klein, Barrett and Rath, Lisa and Galizia, C. Giovanni and Kleineidam, Christoph}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/31820">
    <dc:creator>Ghosh, Satrajit</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-09-23T09:39:35Z</dcterms:available>
    <dcterms:title>Applying human brain image processing methods to honeybee calcium image data</dcterms:title>
    <dc:contributor>Klein, Barrett</dc:contributor>
    <dcterms:abstract xml:lang="eng">Methods developed for analyzing human brain fMRI data have great potential for application to brain imaging data of different spatial and temporal scales, different imaging methods, and different species. In this work, we demonstrate a simple analysis of honeybee (Apis mellifera) brain image data using the Python programming language.&lt;br /&gt;&lt;br /&gt;To our knowledge, this is the first application of human brain imaging techniques to an invertebrate. These techniques provide advantages when analyzing intra-individual phenomena, and invertebrates such as the honeybee offer the advantage of harboring a simpler, experimentally more accessible nervous system.</dcterms:abstract>
    <dc:creator>Kleineidam, Christoph</dc:creator>
    <dc:creator>Klein, Barrett</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Rath, Lisa</dc:creator>
    <dc:contributor>Klein, Arno</dc:contributor>
    <dc:creator>Klein, Arno</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-09-23T09:39:35Z</dc:date>
    <dc:language>eng</dc:language>
    <dc:contributor>Rath, Lisa</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/31820"/>
    <dc:creator>Galizia, C. Giovanni</dc:creator>
    <dc:contributor>Galizia, C. Giovanni</dc:contributor>
    <dc:contributor>Ghosh, Satrajit</dc:contributor>
    <dc:contributor>Kleineidam, Christoph</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:issued>2014</dcterms:issued>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen