Applying human brain image processing methods to honeybee calcium image data

No Thumbnail Available
Files
There are no files associated with this item.
Date
2014
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
ArXiv-ID
International patent number
Link to the license
oops
EU project number
Project
Open Access publication
Collections
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Contribution to a conference collection
Publication status
Published in
Frontiers in Neuroinformatics. - ISSN 1662-5196
Abstract
Methods developed for analyzing human brain fMRI data have great potential for application to brain imaging data of different spatial and temporal scales, different imaging methods, and different species. In this work, we demonstrate a simple analysis of honeybee (Apis mellifera) brain image data using the Python programming language.

To our knowledge, this is the first application of human brain imaging techniques to an invertebrate. These techniques provide advantages when analyzing intra-individual phenomena, and invertebrates such as the honeybee offer the advantage of harboring a simpler, experimentally more accessible nervous system.
Summary in another language
Subject (DDC)
570 Biosciences, Biology
Keywords
Conference
5th INCF Congress of Neuroinformatics, Sep 10, 2012 - Sep 12, 2012, München
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690KLEIN, Arno, Satrajit GHOSH, Barrett KLEIN, Lisa RATH, C. Giovanni GALIZIA, Christoph KLEINEIDAM, 2014. Applying human brain image processing methods to honeybee calcium image data. 5th INCF Congress of Neuroinformatics. München, Sep 10, 2012 - Sep 12, 2012. In: Frontiers in Neuroinformatics. ISSN 1662-5196. Available under: doi: 10.3389/conf.fninf.2014.08.00046
BibTex
@inproceedings{Klein2014Apply-31820,
  year={2014},
  doi={10.3389/conf.fninf.2014.08.00046},
  title={Applying human brain image processing methods to honeybee calcium image data},
  issn={1662-5196},
  booktitle={Frontiers in Neuroinformatics},
  author={Klein, Arno and Ghosh, Satrajit and Klein, Barrett and Rath, Lisa and Galizia, C. Giovanni and Kleineidam, Christoph}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/31820">
    <dc:creator>Ghosh, Satrajit</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-09-23T09:39:35Z</dcterms:available>
    <dcterms:title>Applying human brain image processing methods to honeybee calcium image data</dcterms:title>
    <dc:contributor>Klein, Barrett</dc:contributor>
    <dcterms:abstract xml:lang="eng">Methods developed for analyzing human brain fMRI data have great potential for application to brain imaging data of different spatial and temporal scales, different imaging methods, and different species. In this work, we demonstrate a simple analysis of honeybee (Apis mellifera) brain image data using the Python programming language.&lt;br /&gt;&lt;br /&gt;To our knowledge, this is the first application of human brain imaging techniques to an invertebrate. These techniques provide advantages when analyzing intra-individual phenomena, and invertebrates such as the honeybee offer the advantage of harboring a simpler, experimentally more accessible nervous system.</dcterms:abstract>
    <dc:creator>Kleineidam, Christoph</dc:creator>
    <dc:creator>Klein, Barrett</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Rath, Lisa</dc:creator>
    <dc:contributor>Klein, Arno</dc:contributor>
    <dc:creator>Klein, Arno</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-09-23T09:39:35Z</dc:date>
    <dc:language>eng</dc:language>
    <dc:contributor>Rath, Lisa</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/31820"/>
    <dc:creator>Galizia, C. Giovanni</dc:creator>
    <dc:contributor>Galizia, C. Giovanni</dc:contributor>
    <dc:contributor>Ghosh, Satrajit</dc:contributor>
    <dc:contributor>Kleineidam, Christoph</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:issued>2014</dcterms:issued>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed