Breaking the News : Extracting the Sparse Citation Network Backbone of Online News Articles

Vorschaubild nicht verfügbar
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2015
Autor:innen
Gertz, Michael
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
eISSN
item.preview.dc.identifier.isbn
Bibliografische Daten
Verlag
Schriftenreihe
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
ASONAM '15 : Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015 / Pei, Jian; Silvestri, Fabrizio; Tang, Jie (Hrsg.). - New York, NY : ACM, 2015. - S. 274-279. - ISBN 978-1-4503-3854-7
Zusammenfassung
Networks of online news articles and blog posts are some of the most commonly used data sets in network science. As a result, they have become a vital piece of network analysis and are used for the evaluation of algorithms that work on large networks, or serve as examples in the analysis of information diffusion and propagation. Similarly, scientific citation networks are part of the bedrock upon which much of modern network analysis is built and have been studied for decades. In this paper, we show that the backbone inherent to networks of online news articles shares significant structural similarities to scientific citation networks once the noise of spurious links is stripped away. We present a data set of news articles that, while it is extremely sparse and lightweight, still contains information relevant to the propagation of information in mass media and is remarkably similar to scientific citation networks, thus opening the door to the use of established methodologies from scientometrics and bibliometrics in the analysis of online news propagation.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, 25. Aug. 2015 - 28. Aug. 2015, Paris, France
Rezension
undefined / . - undefined, undefined. - (undefined; undefined)
Zitieren
ISO 690SPITZ, Andreas, Michael GERTZ, 2015. Breaking the News : Extracting the Sparse Citation Network Backbone of Online News Articles. 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. Paris, France, 25. Aug. 2015 - 28. Aug. 2015. In: PEI, Jian, ed., Fabrizio SILVESTRI, ed., Jie TANG, ed.. ASONAM '15 : Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015. New York, NY:ACM, pp. 274-279. ISBN 978-1-4503-3854-7. Available under: doi: 10.1145/2808797.2809380
BibTex
@inproceedings{Spitz2015Break-55845,
  year={2015},
  doi={10.1145/2808797.2809380},
  title={Breaking the News : Extracting the Sparse Citation Network Backbone of Online News Articles},
  isbn={978-1-4503-3854-7},
  publisher={ACM},
  address={New York, NY},
  booktitle={ASONAM '15 : Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015},
  pages={274--279},
  editor={Pei, Jian and Silvestri, Fabrizio and Tang, Jie},
  author={Spitz, Andreas and Gertz, Michael}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55845">
    <dc:creator>Gertz, Michael</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55845"/>
    <dc:creator>Spitz, Andreas</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-13T08:44:39Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">Networks of online news articles and blog posts are some of the most commonly used data sets in network science. As a result, they have become a vital piece of network analysis and are used for the evaluation of algorithms that work on large networks, or serve as examples in the analysis of information diffusion and propagation. Similarly, scientific citation networks are part of the bedrock upon which much of modern network analysis is built and have been studied for decades. In this paper, we show that the backbone inherent to networks of online news articles shares significant structural similarities to scientific citation networks once the noise of spurious links is stripped away. We present a data set of news articles that, while it is extremely sparse and lightweight, still contains information relevant to the propagation of information in mass media and is remarkably similar to scientific citation networks, thus opening the door to the use of established methodologies from scientometrics and bibliometrics in the analysis of online news propagation.</dcterms:abstract>
    <dcterms:issued>2015</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-13T08:44:39Z</dcterms:available>
    <dcterms:title>Breaking the News : Extracting the Sparse Citation Network Backbone of Online News Articles</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:language>eng</dc:language>
    <dc:contributor>Spitz, Andreas</dc:contributor>
    <dc:contributor>Gertz, Michael</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet