Publikation: Breaking the News : Extracting the Sparse Citation Network Backbone of Online News Articles
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Networks of online news articles and blog posts are some of the most commonly used data sets in network science. As a result, they have become a vital piece of network analysis and are used for the evaluation of algorithms that work on large networks, or serve as examples in the analysis of information diffusion and propagation. Similarly, scientific citation networks are part of the bedrock upon which much of modern network analysis is built and have been studied for decades. In this paper, we show that the backbone inherent to networks of online news articles shares significant structural similarities to scientific citation networks once the noise of spurious links is stripped away. We present a data set of news articles that, while it is extremely sparse and lightweight, still contains information relevant to the propagation of information in mass media and is remarkably similar to scientific citation networks, thus opening the door to the use of established methodologies from scientometrics and bibliometrics in the analysis of online news propagation.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SPITZ, Andreas, Michael GERTZ, 2015. Breaking the News : Extracting the Sparse Citation Network Backbone of Online News Articles. 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. Paris, France, 25. Aug. 2015 - 28. Aug. 2015. In: PEI, Jian, ed., Fabrizio SILVESTRI, ed., Jie TANG, ed.. ASONAM '15 : Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015. New York, NY: ACM, 2015, pp. 274-279. ISBN 978-1-4503-3854-7. Available under: doi: 10.1145/2808797.2809380BibTex
@inproceedings{Spitz2015Break-55845, year={2015}, doi={10.1145/2808797.2809380}, title={Breaking the News : Extracting the Sparse Citation Network Backbone of Online News Articles}, isbn={978-1-4503-3854-7}, publisher={ACM}, address={New York, NY}, booktitle={ASONAM '15 : Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015}, pages={274--279}, editor={Pei, Jian and Silvestri, Fabrizio and Tang, Jie}, author={Spitz, Andreas and Gertz, Michael} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55845"> <dc:creator>Gertz, Michael</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55845"/> <dc:creator>Spitz, Andreas</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-13T08:44:39Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:abstract xml:lang="eng">Networks of online news articles and blog posts are some of the most commonly used data sets in network science. As a result, they have become a vital piece of network analysis and are used for the evaluation of algorithms that work on large networks, or serve as examples in the analysis of information diffusion and propagation. Similarly, scientific citation networks are part of the bedrock upon which much of modern network analysis is built and have been studied for decades. In this paper, we show that the backbone inherent to networks of online news articles shares significant structural similarities to scientific citation networks once the noise of spurious links is stripped away. We present a data set of news articles that, while it is extremely sparse and lightweight, still contains information relevant to the propagation of information in mass media and is remarkably similar to scientific citation networks, thus opening the door to the use of established methodologies from scientometrics and bibliometrics in the analysis of online news propagation.</dcterms:abstract> <dcterms:issued>2015</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-13T08:44:39Z</dcterms:available> <dcterms:title>Breaking the News : Extracting the Sparse Citation Network Backbone of Online News Articles</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:rights>terms-of-use</dc:rights> <dc:language>eng</dc:language> <dc:contributor>Spitz, Andreas</dc:contributor> <dc:contributor>Gertz, Michael</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> </rdf:Description> </rdf:RDF>