Publikation: Analysing multitrait–multimethod data with structural equation models for ordinal variables applying the WLSMV estimator : What sample size is needed for valid results?
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Convergent and discriminant validity of psychological constructs can best be examined in the framework of multitrait–multimethod (MTMM) analysis. To gain information at the level of single items, MTMM models for categorical variables have to be applied. The CTC(M−1) model is presented as an example of an MTMM model for ordinal variables. Based on an empirical application of the CTC(M−1) model, a complex simulation study was conducted to examine the sample size requirements of the robust weighted least squares mean‐ and variance‐adjusted χ2 test of model fit (WLSMV estimator) implemented in Mplus. In particular, the simulation study analysed the χ2 approximation, the parameter estimation bias, the standard error bias, and the reliability of the WLSMV estimator depending on the varying number of items per trait–method unit (ranging from 2 to 8) and varying sample sizes (250, 500, 750, and 1000 observations). The results showed that the WLSMV estimator provided a good – albeit slightly liberal – χ2 approximation and stable and reliable parameter estimates for models of reasonable complexity (2–4 items) and small sample sizes (at least 250 observations). When more complex models with 5 or more items were analysed, larger sample sizes of at least 500 observations were needed. The most complex model with 9 trait–method units and 8 items (72 observed variables) requires sample sizes of at least 1000 observations.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
NUSSBECK, Fridtjof W., Michael EID, Tanja LISCHETZKE, 2006. Analysing multitrait–multimethod data with structural equation models for ordinal variables applying the WLSMV estimator : What sample size is needed for valid results?. In: British Journal of Mathematical and Statistical Psychology. 2006, 59(1), pp. 195-213. ISSN 0007-1102. eISSN 0007-1102. Available under: doi: 10.1348/000711005X67490BibTex
@article{Nussbeck2006-05Analy-43792, year={2006}, doi={10.1348/000711005X67490}, title={Analysing multitrait–multimethod data with structural equation models for ordinal variables applying the WLSMV estimator : What sample size is needed for valid results?}, number={1}, volume={59}, issn={0007-1102}, journal={British Journal of Mathematical and Statistical Psychology}, pages={195--213}, author={Nussbeck, Fridtjof W. and Eid, Michael and Lischetzke, Tanja} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43792"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <dc:contributor>Lischetzke, Tanja</dc:contributor> <dc:creator>Nussbeck, Fridtjof W.</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2006-05</dcterms:issued> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43792/1/Nussbeck_2-cssjfgu5kh5u4.pdf"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43792/1/Nussbeck_2-cssjfgu5kh5u4.pdf"/> <dc:contributor>Nussbeck, Fridtjof W.</dc:contributor> <dcterms:title>Analysing multitrait–multimethod data with structural equation models for ordinal variables applying the WLSMV estimator : What sample size is needed for valid results?</dcterms:title> <dc:creator>Eid, Michael</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-11-13T09:24:17Z</dcterms:available> <dc:contributor>Eid, Michael</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-11-13T09:24:17Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43792"/> <dc:creator>Lischetzke, Tanja</dc:creator> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">Convergent and discriminant validity of psychological constructs can best be examined in the framework of multitrait–multimethod (MTMM) analysis. To gain information at the level of single items, MTMM models for categorical variables have to be applied. The CTC(M−1) model is presented as an example of an MTMM model for ordinal variables. Based on an empirical application of the CTC(M−1) model, a complex simulation study was conducted to examine the sample size requirements of the robust weighted least squares mean‐ and variance‐adjusted χ2 test of model fit (WLSMV estimator) implemented in Mplus. In particular, the simulation study analysed the χ2 approximation, the parameter estimation bias, the standard error bias, and the reliability of the WLSMV estimator depending on the varying number of items per trait–method unit (ranging from 2 to 8) and varying sample sizes (250, 500, 750, and 1000 observations). The results showed that the WLSMV estimator provided a good – albeit slightly liberal – χ2 approximation and stable and reliable parameter estimates for models of reasonable complexity (2–4 items) and small sample sizes (at least 250 observations). When more complex models with 5 or more items were analysed, larger sample sizes of at least 500 observations were needed. The most complex model with 9 trait–method units and 8 items (72 observed variables) requires sample sizes of at least 1000 observations.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> </rdf:Description> </rdf:RDF>