A text and image analysis workflow using citizen science data to extract relevant social media records : Combining red kite observations from Flickr, eBird and iNaturalist

Lade...
Vorschaubild
Dateien
Hartmann_2-cwktbfl63z5p4.pdf
Hartmann_2-cwktbfl63z5p4.pdfGröße: 2.12 MBDownloads: 105
Datum
2022
Autor:innen
Hartmann, Maximilian C.
Schott, Moritz
Dsouza, Alishiba
Volpi, Michele
Purves, Ross S.
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Ecological Informatics. Elsevier. 2022, 71, 101782. ISSN 1574-9541. eISSN 1878-0512. Available under: doi: 10.1016/j.ecoinf.2022.101782
Zusammenfassung

There is an urgent need to develop new methods to monitor the state of the environment. One potential approach is to use new data sources, such as User-Generated Content, to augment existing approaches. However, to date, studies typically focus on a single date source and modality. We take a new approach, using citizen science records recording sightings of red kites (Milvus milvus) to train and validate a Convolutional Neural Network (CNN) capable of identifying images containing red kites. This CNN is integrated in a sequential workflow which also uses an off-the-shelf bird classifier and text metadata to retrieve observations of red kites in the Chilterns, England. Our workflow reduces an initial set of more than 600,000 images to just 3065 candidate images. Manual inspection of these images shows that our approach has a precision of 0.658. A workflow using only text identifies 14% less images than that including image content analysis, and by combining image and text classifiers we achieve almost perfect precision of 0.992. Images retrieved from social media records complement those recorded by citizen scientists spatially and temporally, and our workflow is sufficiently generic that it can easily be transferred to other species.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690HARTMANN, Maximilian C., Moritz SCHOTT, Alishiba DSOUZA, Yannick METZ, Michele VOLPI, Ross S. PURVES, 2022. A text and image analysis workflow using citizen science data to extract relevant social media records : Combining red kite observations from Flickr, eBird and iNaturalist. In: Ecological Informatics. Elsevier. 2022, 71, 101782. ISSN 1574-9541. eISSN 1878-0512. Available under: doi: 10.1016/j.ecoinf.2022.101782
BibTex
@article{Hartmann2022-11image-58730,
  year={2022},
  doi={10.1016/j.ecoinf.2022.101782},
  title={A text and image analysis workflow using citizen science data to extract relevant social media records : Combining red kite observations from Flickr, eBird and iNaturalist},
  volume={71},
  issn={1574-9541},
  journal={Ecological Informatics},
  author={Hartmann, Maximilian C. and Schott, Moritz and Dsouza, Alishiba and Metz, Yannick and Volpi, Michele and Purves, Ross S.},
  note={Article Number: 101782}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58730">
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58730/1/Hartmann_2-cwktbfl63z5p4.pdf"/>
    <dc:creator>Metz, Yannick</dc:creator>
    <dc:creator>Hartmann, Maximilian C.</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-10-05T07:18:58Z</dcterms:available>
    <dcterms:title>A text and image analysis workflow using citizen science data to extract relevant social media records : Combining red kite observations from Flickr, eBird and iNaturalist</dcterms:title>
    <dc:contributor>Volpi, Michele</dc:contributor>
    <dcterms:issued>2022-11</dcterms:issued>
    <dc:contributor>Purves, Ross S.</dc:contributor>
    <dc:contributor>Hartmann, Maximilian C.</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Schott, Moritz</dc:creator>
    <dc:contributor>Dsouza, Alishiba</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Volpi, Michele</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:contributor>Metz, Yannick</dc:contributor>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">There is an urgent need to develop new methods to monitor the state of the environment. One potential approach is to use new data sources, such as User-Generated Content, to augment existing approaches. However, to date, studies typically focus on a single date source and modality. We take a new approach, using citizen science records recording sightings of red kites (Milvus milvus) to train and validate a Convolutional Neural Network (CNN) capable of identifying images containing red kites. This CNN is integrated in a sequential workflow which also uses an off-the-shelf bird classifier and text metadata to retrieve observations of red kites in the Chilterns, England. Our workflow reduces an initial set of more than 600,000 images to just 3065 candidate images. Manual inspection of these images shows that our approach has a precision of 0.658. A workflow using only text identifies 14% less images than that including image content analysis, and by combining image and text classifiers we achieve almost perfect precision of 0.992. Images retrieved from social media records complement those recorded by citizen scientists spatially and temporally, and our workflow is sufficiently generic that it can easily be transferred to other species.</dcterms:abstract>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58730"/>
    <dc:creator>Dsouza, Alishiba</dc:creator>
    <dc:creator>Purves, Ross S.</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-10-05T07:18:58Z</dc:date>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58730/1/Hartmann_2-cwktbfl63z5p4.pdf"/>
    <dc:contributor>Schott, Moritz</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen