Role of Entropy in Domain Wall Motion in Thermal Gradients

Loading...
Thumbnail Image
Date
2014
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published in
Physical Review Letters ; 113 (2014), 9. - 097201. - ISSN 0031-9007. - eISSN 1079-7114
Abstract
Thermally driven domain wall (DW) motion caused solely by magnonic spin currents was forecast theoretically and has been measured recently in a magnetic insulator using magneto-optical Kerr effect microscopy. We present an analytical calculation of the DW velocity as well as the Walker breakdown within the framework of the Landau Lifshitz Bloch equation of motion. The temperature gradient leads to a torque term acting on the magnetization where the DW is mainly driven by the temperature dependence of the exchange stiffness, or—in a more general picture—by the maximization of entropy. The existence of this entropic torque term does not rest on the angular momentum transfer from the magnonic spin current. Hence, even DWs in antiferromagnets or compensated ferrimagnets should move accordingly. We further argue that the entropic torque exceeds that of the magnonic spin current.
Summary in another language
Subject (DDC)
530 Physics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690SCHLICKEISER, Frank, Ulrike RITZMANN, Denise HINZKE, Ulrich NOWAK, 2014. Role of Entropy in Domain Wall Motion in Thermal Gradients. In: Physical Review Letters. 113(9), 097201. ISSN 0031-9007. eISSN 1079-7114. Available under: doi: 10.1103/PhysRevLett.113.097201
BibTex
@article{Schlickeiser2014Entro-29350,
  year={2014},
  doi={10.1103/PhysRevLett.113.097201},
  title={Role of Entropy in Domain Wall Motion in Thermal Gradients},
  number={9},
  volume={113},
  issn={0031-9007},
  journal={Physical Review Letters},
  author={Schlickeiser, Frank and Ritzmann, Ulrike and Hinzke, Denise and Nowak, Ulrich},
  note={Article Number: 097201}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29350">
    <dc:contributor>Schlickeiser, Frank</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Hinzke, Denise</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Nowak, Ulrich</dc:creator>
    <dc:contributor>Hinzke, Denise</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29350/1/Schlickeiser_0-259105.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-11-27T12:32:22Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Ritzmann, Ulrike</dc:contributor>
    <dcterms:abstract xml:lang="eng">Thermally driven domain wall (DW) motion caused solely by magnonic spin currents was forecast theoretically and has been measured recently in a magnetic insulator using magneto-optical Kerr effect microscopy. We present an analytical calculation of the DW velocity as well as the Walker breakdown within the framework of the Landau Lifshitz Bloch equation of motion. The temperature gradient leads to a torque term acting on the magnetization where the DW is mainly driven by the temperature dependence of the exchange stiffness, or—in a more general picture—by the maximization of entropy. The existence of this entropic torque term does not rest on the angular momentum transfer from the magnonic spin current. Hence, even DWs in antiferromagnets or compensated ferrimagnets should move accordingly. We further argue that the entropic torque exceeds that of the magnonic spin current.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dc:creator>Ritzmann, Ulrike</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29350"/>
    <dc:creator>Schlickeiser, Frank</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Nowak, Ulrich</dc:contributor>
    <dcterms:title>Role of Entropy in Domain Wall Motion in Thermal Gradients</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-11-27T12:32:22Z</dc:date>
    <dcterms:issued>2014</dcterms:issued>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29350/1/Schlickeiser_0-259105.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed