Screen-printed Al-alloyed rear junction solar cell concept applied to very thin (100 μm) large-area n-type Si wafers

Loading...
Thumbnail Image
Date
2012
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
ArXiv-ID
International patent number
EU project number
256695
Project
20 percent efficiency on less than 100 um thick industrieally feasible c-Si solar cells (20plus)
Open Access publication
Collections
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published in
Energy Procedia ; 27 (2012). - pp. 460-466. - ISSN 1876-6102. - eISSN 1876-6102
Abstract
Reducing the thickness of crystalline Si wafers processed to solar cells returns two significant benefits. Firstly, processing cost is reduced by saving cost- and energy-intensive Si material. Secondly, the required diffusion length of minority carriers is smaller, thus, wafers with a smaller carrier lifetime (e.g. due to higher base doping) can be utilized. In this work, the industrially feasible "PhosTop" cell concept is employed by manufacturing large-area n-type rear junction solar cells with a screen-printed Al-alloyed emitter featuring a selective phosphorous front surface field and a SiO2/SiNx passivation on the front.
PC1D simulations for substrates with different base doping concentrations show that the range of base resistivities utilizable for those PhosTop solar cells is extended towards higher doping concentrations with decreasing wafer thickness. PC1D forecasts a conversion efficiency of the chosen 2.8 Ωcm n-type Czochralski-Si wafers of 19.2% for 100 μm thickness, merely 0.1% less than for standard thickness but saving ∼25% of the Si material. The manufactured thin large-area solar cells achieve a maximum efficiency of 19.0%.
Summary in another language
Subject (DDC)
530 Physics
Keywords
Thin wafers,n-type,Al emitter,selective
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690SCHIELE, Yvonne, Felix BOOK, Sven SEREN, Giso HAHN, Barbara TERHEIDEN, 2012. Screen-printed Al-alloyed rear junction solar cell concept applied to very thin (100 μm) large-area n-type Si wafers. In: Energy Procedia. 27, pp. 460-466. ISSN 1876-6102. eISSN 1876-6102. Available under: doi: 10.1016/j.egypro.2012.07.094
BibTex
@article{Schiele2012Scree-22750,
  year={2012},
  doi={10.1016/j.egypro.2012.07.094},
  title={Screen-printed Al-alloyed rear junction solar cell concept applied to very thin (100 μm) large-area n-type Si wafers},
  volume={27},
  issn={1876-6102},
  journal={Energy Procedia},
  pages={460--466},
  author={Schiele, Yvonne and Book, Felix and Seren, Sven and Hahn, Giso and Terheiden, Barbara}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/22750">
    <dc:contributor>Terheiden, Barbara</dc:contributor>
    <dc:contributor>Hahn, Giso</dc:contributor>
    <dc:creator>Hahn, Giso</dc:creator>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/3.0/"/>
    <dcterms:bibliographicCitation>Energy Procedia ; 27 (2012). - S. 460-466</dcterms:bibliographicCitation>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/22750/2/Schiele_227500_flat.pdf"/>
    <dc:rights>Attribution-NonCommercial-NoDerivs 3.0 Unported</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:language>eng</dc:language>
    <dcterms:issued>2012</dcterms:issued>
    <dc:contributor>Book, Felix</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/22750/2/Schiele_227500_flat.pdf"/>
    <dc:contributor>Seren, Sven</dc:contributor>
    <dc:creator>Terheiden, Barbara</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Book, Felix</dc:creator>
    <dcterms:title>Screen-printed Al-alloyed rear junction solar cell concept applied to very thin (100 μm) large-area n-type Si wafers</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-21T08:55:33Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-21T08:55:33Z</dc:date>
    <dc:creator>Schiele, Yvonne</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/22750"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract xml:lang="eng">Reducing the thickness of crystalline Si wafers processed to solar cells returns two significant benefits. Firstly, processing cost is reduced by saving cost- and energy-intensive Si material. Secondly, the required diffusion length of minority carriers is smaller, thus, wafers with a smaller carrier lifetime (e.g. due to higher base doping) can be utilized. In this work, the industrially feasible "PhosTop" cell concept is employed by manufacturing large-area n-type rear junction solar cells with a screen-printed Al-alloyed emitter featuring a selective phosphorous front surface field and a SiO2/SiNx passivation on the front.&lt;br /&gt;PC1D simulations for substrates with different base doping concentrations show that the range of base resistivities utilizable for those PhosTop solar cells is extended towards higher doping concentrations with decreasing wafer thickness. PC1D forecasts a conversion efficiency of the chosen 2.8 Ωcm n-type Czochralski-Si wafers of 19.2% for 100 μm thickness, merely 0.1% less than for standard thickness but saving ∼25% of the Si material. The manufactured thin large-area solar cells achieve a maximum efficiency of 19.0%.</dcterms:abstract>
    <dc:creator>Seren, Sven</dc:creator>
    <dc:contributor>Schiele, Yvonne</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed