Screen-printed Al-alloyed rear junction solar cell concept applied to very thin (100 μm) large-area n-type Si wafers

Lade...
Vorschaubild
Dateien
Schiele_227500_flat.pdf
Schiele_227500_flat.pdfGröße: 771.56 KBDownloads: 256
Datum
2012
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
European Union (EU): 256695
Projekt
20 percent efficiency on less than 100 um thick industrieally feasible c-Si solar cells (20plus)
Open Access-Veröffentlichung
Open Access Gold
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Energy Procedia. 2012, 27, pp. 460-466. ISSN 1876-6102. eISSN 1876-6102. Available under: doi: 10.1016/j.egypro.2012.07.094
Zusammenfassung

Reducing the thickness of crystalline Si wafers processed to solar cells returns two significant benefits. Firstly, processing cost is reduced by saving cost- and energy-intensive Si material. Secondly, the required diffusion length of minority carriers is smaller, thus, wafers with a smaller carrier lifetime (e.g. due to higher base doping) can be utilized. In this work, the industrially feasible "PhosTop" cell concept is employed by manufacturing large-area n-type rear junction solar cells with a screen-printed Al-alloyed emitter featuring a selective phosphorous front surface field and a SiO2/SiNx passivation on the front.
PC1D simulations for substrates with different base doping concentrations show that the range of base resistivities utilizable for those PhosTop solar cells is extended towards higher doping concentrations with decreasing wafer thickness. PC1D forecasts a conversion efficiency of the chosen 2.8 Ωcm n-type Czochralski-Si wafers of 19.2% for 100 μm thickness, merely 0.1% less than for standard thickness but saving ∼25% of the Si material. The manufactured thin large-area solar cells achieve a maximum efficiency of 19.0%.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
530 Physik
Schlagwörter
Thin wafers, n-type, Al emitter, selective
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690SCHIELE, Yvonne, Felix BOOK, Sven SEREN, Giso HAHN, Barbara TERHEIDEN, 2012. Screen-printed Al-alloyed rear junction solar cell concept applied to very thin (100 μm) large-area n-type Si wafers. In: Energy Procedia. 2012, 27, pp. 460-466. ISSN 1876-6102. eISSN 1876-6102. Available under: doi: 10.1016/j.egypro.2012.07.094
BibTex
@article{Schiele2012Scree-22750,
  year={2012},
  doi={10.1016/j.egypro.2012.07.094},
  title={Screen-printed Al-alloyed rear junction solar cell concept applied to very thin (100 μm) large-area n-type Si wafers},
  volume={27},
  issn={1876-6102},
  journal={Energy Procedia},
  pages={460--466},
  author={Schiele, Yvonne and Book, Felix and Seren, Sven and Hahn, Giso and Terheiden, Barbara}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/22750">
    <dc:contributor>Terheiden, Barbara</dc:contributor>
    <dc:contributor>Hahn, Giso</dc:contributor>
    <dc:creator>Hahn, Giso</dc:creator>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/3.0/"/>
    <dcterms:bibliographicCitation>Energy Procedia ; 27 (2012). - S. 460-466</dcterms:bibliographicCitation>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/22750/2/Schiele_227500_flat.pdf"/>
    <dc:rights>Attribution-NonCommercial-NoDerivs 3.0 Unported</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:language>eng</dc:language>
    <dcterms:issued>2012</dcterms:issued>
    <dc:contributor>Book, Felix</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/22750/2/Schiele_227500_flat.pdf"/>
    <dc:contributor>Seren, Sven</dc:contributor>
    <dc:creator>Terheiden, Barbara</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Book, Felix</dc:creator>
    <dcterms:title>Screen-printed Al-alloyed rear junction solar cell concept applied to very thin (100 μm) large-area n-type Si wafers</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-21T08:55:33Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-21T08:55:33Z</dc:date>
    <dc:creator>Schiele, Yvonne</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/22750"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract xml:lang="eng">Reducing the thickness of crystalline Si wafers processed to solar cells returns two significant benefits. Firstly, processing cost is reduced by saving cost- and energy-intensive Si material. Secondly, the required diffusion length of minority carriers is smaller, thus, wafers with a smaller carrier lifetime (e.g. due to higher base doping) can be utilized. In this work, the industrially feasible "PhosTop" cell concept is employed by manufacturing large-area n-type rear junction solar cells with a screen-printed Al-alloyed emitter featuring a selective phosphorous front surface field and a SiO2/SiNx passivation on the front.&lt;br /&gt;PC1D simulations for substrates with different base doping concentrations show that the range of base resistivities utilizable for those PhosTop solar cells is extended towards higher doping concentrations with decreasing wafer thickness. PC1D forecasts a conversion efficiency of the chosen 2.8 Ωcm n-type Czochralski-Si wafers of 19.2% for 100 μm thickness, merely 0.1% less than for standard thickness but saving ∼25% of the Si material. The manufactured thin large-area solar cells achieve a maximum efficiency of 19.0%.</dcterms:abstract>
    <dc:creator>Seren, Sven</dc:creator>
    <dc:contributor>Schiele, Yvonne</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen