Publikation:

Matrix methods for the tensorial Bernstein form

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2019

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Applied Mathematics and Computation. 2019, 346, pp. 254-271. ISSN 0096-3003. eISSN 1873-5649. Available under: doi: 10.1016/j.amc.2018.08.049

Zusammenfassung

In this paper, multivariate polynomials in the Bernstein basis over a box (tensorial Bernstein representation) are considered. A new matrix method for the computation of the polynomial coefficients with respect to the Bernstein basis, the so-called Bernstein coefficients, are presented and compared with existing methods. Also matrix methods for the calculation of the Bernstein coefficients over subboxes generated by subdivision of the original box are proposed. All the methods solely use matrix operations such as multiplication, transposition, and reshaping; some of them rely also on the bidiagonal factorization of the lower triangular Pascal matrix or the factorization of this matrix by a Toeplitz matrix. In the case that the coefficients of the polynomial are due to uncertainties and can be represented in the form of intervals it is shown that the developed methods can be extended to compute the set of the Bernstein coefficients of all members of the polynomial family.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690TITI, Jihad, Jürgen GARLOFF, 2019. Matrix methods for the tensorial Bernstein form. In: Applied Mathematics and Computation. 2019, 346, pp. 254-271. ISSN 0096-3003. eISSN 1873-5649. Available under: doi: 10.1016/j.amc.2018.08.049
BibTex
@article{Titi2019Matri-43397.2,
  year={2019},
  doi={10.1016/j.amc.2018.08.049},
  title={Matrix methods for the tensorial Bernstein form},
  volume={346},
  issn={0096-3003},
  journal={Applied Mathematics and Computation},
  pages={254--271},
  author={Titi, Jihad and Garloff, Jürgen}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43397.2">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Titi, Jihad</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">In this paper, multivariate polynomials in the Bernstein basis over a box (tensorial Bernstein representation) are considered. A new matrix method for the computation of the polynomial coefficients with respect to the Bernstein basis, the so-called Bernstein coefficients, are presented and compared with existing methods. Also matrix methods for the calculation of the Bernstein coefficients over subboxes generated by subdivision of the original box are proposed. All the methods solely use matrix operations such as multiplication, transposition, and reshaping; some of them rely also on the bidiagonal factorization of the lower triangular Pascal matrix or the factorization of this matrix by a Toeplitz matrix. In the case that the coefficients of the polynomial are due to uncertainties and can be represented in the form of intervals it is shown that the developed methods can be extended to compute the set of the Bernstein coefficients of all members of the polynomial family.</dcterms:abstract>
    <dc:contributor>Garloff, Jürgen</dc:contributor>
    <dc:creator>Titi, Jihad</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Matrix methods for the tensorial Bernstein form</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-09T13:03:23Z</dcterms:available>
    <dcterms:issued>2019</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43397.2"/>
    <dc:creator>Garloff, Jürgen</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-09T13:03:23Z</dc:date>
    <dc:rights>terms-of-use</dc:rights>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen

Versionsgeschichte

Gerade angezeigt 1 - 2 von 2
VersionDatumZusammenfassung
2*
2019-01-09 13:02:05
2018-09-28 08:12:35
* Ausgewählte Version