Matrix methods for the tensorial Bernstein form

Vorschaubild nicht verfügbar
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2019
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
eISSN
item.preview.dc.identifier.isbn
Bibliografische Daten
Verlag
Schriftenreihe
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Urheberrechtlich geschützt
EU-Projektnummer
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Applied Mathematics and Computation ; 346 (2019). - S. 254-271. - ISSN 0096-3003. - eISSN 1873-5649
Zusammenfassung
In this paper, multivariate polynomials in the Bernstein basis over a box (tensorial Bernstein representation) are considered. A new matrix method for the computation of the polynomial coefficients with respect to the Bernstein basis, the so-called Bernstein coefficients, are presented and compared with existing methods. Also matrix methods for the calculation of the Bernstein coefficients over subboxes generated by subdivision of the original box are proposed. All the methods solely use matrix operations such as multiplication, transposition, and reshaping; some of them rely also on the bidiagonal factorization of the lower triangular Pascal matrix or the factorization of this matrix by a Toeplitz matrix. In the case that the coefficients of the polynomial are due to uncertainties and can be represented in the form of intervals it is shown that the developed methods can be extended to compute the set of the Bernstein coefficients of all members of the polynomial family.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined. - (undefined; undefined)
Zitieren
ISO 690TITI, Jihad, Jürgen GARLOFF, 2019. Matrix methods for the tensorial Bernstein form. In: Applied Mathematics and Computation. 346, pp. 254-271. ISSN 0096-3003. eISSN 1873-5649. Available under: doi: 10.1016/j.amc.2018.08.049
BibTex
@article{Titi2019Matri-43397.2,
  year={2019},
  doi={10.1016/j.amc.2018.08.049},
  title={Matrix methods for the tensorial Bernstein form},
  volume={346},
  issn={0096-3003},
  journal={Applied Mathematics and Computation},
  pages={254--271},
  author={Titi, Jihad and Garloff, Jürgen}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43397.2">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Titi, Jihad</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">In this paper, multivariate polynomials in the Bernstein basis over a box (tensorial Bernstein representation) are considered. A new matrix method for the computation of the polynomial coefficients with respect to the Bernstein basis, the so-called Bernstein coefficients, are presented and compared with existing methods. Also matrix methods for the calculation of the Bernstein coefficients over subboxes generated by subdivision of the original box are proposed. All the methods solely use matrix operations such as multiplication, transposition, and reshaping; some of them rely also on the bidiagonal factorization of the lower triangular Pascal matrix or the factorization of this matrix by a Toeplitz matrix. In the case that the coefficients of the polynomial are due to uncertainties and can be represented in the form of intervals it is shown that the developed methods can be extended to compute the set of the Bernstein coefficients of all members of the polynomial family.</dcterms:abstract>
    <dc:contributor>Garloff, Jürgen</dc:contributor>
    <dc:creator>Titi, Jihad</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Matrix methods for the tensorial Bernstein form</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-09T13:03:23Z</dcterms:available>
    <dcterms:issued>2019</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43397.2"/>
    <dc:creator>Garloff, Jürgen</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-09T13:03:23Z</dc:date>
    <dc:rights>terms-of-use</dc:rights>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt

Versionsgeschichte

Gerade angezeigt 1 - 2 von 2
VersionDatumZusammenfassung
2*
2019-01-09 13:02:05
2018-09-28 08:12:35
* Ausgewählte Version