Publikation: Microscopic mechanisms of the shape memory effect in crosslinked polymers
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this work we perform coarse-grained molecular dynamics (MD) simulations to study the molecular origins of the thermal shape memory effect in crosslinked polymer materials. Thermal shape memory polymers (SMPs) are materials able to hold a deformed shape when cooled below the glass transition temperature, and subsequently recover the initial shape when heated. To use SMPs in various applications requires materials which reliably hold and recover their shapes; this has sparked recent synthesis work to create new SMP materials with optimized properties. Here we use coarse-grained MD simulations with different polymer chain models to determine which parameters affect relevant SMP behavior and to investigate the molecular mechanisms at the level of individual chains during temperature cycling. The simulations show how temperature-dependent chain mobility leads to shape memory polymer behavior. In particular, we demonstrate the importance of attractive monomer interactions in leading to 'good' SMP behavior. The results suggest promising routes for material development. Additionally, the mechanisms identified with the simple simulation model can be used to inform multi-scale models of SMP material behavior.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DAVIDSON, Jacob D., Nakhiah C. GOULBOURNE, 2015. Microscopic mechanisms of the shape memory effect in crosslinked polymers. In: Smart Materials and Structures. Institute of Physics Publishing (IOP). 2015, 24(5), 055014. ISSN 0964-1726. eISSN 1361-665X. Available under: doi: 10.1088/0964-1726/24/5/055014BibTex
@article{Davidson2015-05-01Micro-50979, year={2015}, doi={10.1088/0964-1726/24/5/055014}, title={Microscopic mechanisms of the shape memory effect in crosslinked polymers}, number={5}, volume={24}, issn={0964-1726}, journal={Smart Materials and Structures}, author={Davidson, Jacob D. and Goulbourne, Nakhiah C.}, note={Article Number: 055014} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/50979"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-23T08:04:01Z</dc:date> <dc:contributor>Davidson, Jacob D.</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Davidson, Jacob D.</dc:creator> <dc:creator>Goulbourne, Nakhiah C.</dc:creator> <dc:rights>terms-of-use</dc:rights> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-23T08:04:01Z</dcterms:available> <dcterms:issued>2015-05-01</dcterms:issued> <dc:language>eng</dc:language> <dcterms:title>Microscopic mechanisms of the shape memory effect in crosslinked polymers</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:abstract xml:lang="eng">In this work we perform coarse-grained molecular dynamics (MD) simulations to study the molecular origins of the thermal shape memory effect in crosslinked polymer materials. Thermal shape memory polymers (SMPs) are materials able to hold a deformed shape when cooled below the glass transition temperature, and subsequently recover the initial shape when heated. To use SMPs in various applications requires materials which reliably hold and recover their shapes; this has sparked recent synthesis work to create new SMP materials with optimized properties. Here we use coarse-grained MD simulations with different polymer chain models to determine which parameters affect relevant SMP behavior and to investigate the molecular mechanisms at the level of individual chains during temperature cycling. The simulations show how temperature-dependent chain mobility leads to shape memory polymer behavior. In particular, we demonstrate the importance of attractive monomer interactions in leading to 'good' SMP behavior. The results suggest promising routes for material development. Additionally, the mechanisms identified with the simple simulation model can be used to inform multi-scale models of SMP material behavior.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50979"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:contributor>Goulbourne, Nakhiah C.</dc:contributor> </rdf:Description> </rdf:RDF>