Publikation:

Automated identification of media bias in news articles : an interdisciplinary literature review

Lade...
Vorschaubild

Dateien

Hamborg_2-dovzzlr93tql8.pdf
Hamborg_2-dovzzlr93tql8.pdfGröße: 771.74 KBDownloads: 611

Datum

2019

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

International Journal on Digital Libraries. 2019, 20(4), pp. 391-415. ISSN 1432-5012. eISSN 1432-1300. Available under: doi: 10.1007/s00799-018-0261-y

Zusammenfassung

Media bias, i.e., slanted news coverage, can strongly impact the public perception of the reported topics. In the social sciences, research over the past decades has developed comprehensive models to describe media bias and effective, yet often manual and thus cumbersome, methods for analysis. In contrast, in computer science fast, automated, and scalable methods are available, but few approaches systematically analyze media bias. The models used to analyze media bias in computer science tend to be simpler compared to models established in the social sciences, and do not necessarily address the most pressing substantial questions, despite technically superior approaches. Computer science research on media bias thus stands to profit from a closer integration of models for the study of media bias developed in the social sciences with automated methods from computer science. This article first establishes a shared conceptual understanding by mapping the state of the art from the social sciences to a framework, which can be targeted by approaches from computer science. Next, we investigate different forms of media bias and review how each form is analyzed in the social sciences. For each form, we then discuss methods from computer science suitable to (semi-)automate the corresponding analysis. Our review suggests that suitable, automated methods from computer science, primarily in the realm of natural language processing, are already available for each of the discussed forms of media bias, opening multiple directions for promising further research in computer science in this area.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
320 Politik

Schlagwörter

News bias, News slant, Natural language processing (NLP)

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HAMBORG, Felix, Karsten DONNAY, Bela GIPP, 2019. Automated identification of media bias in news articles : an interdisciplinary literature review. In: International Journal on Digital Libraries. 2019, 20(4), pp. 391-415. ISSN 1432-5012. eISSN 1432-1300. Available under: doi: 10.1007/s00799-018-0261-y
BibTex
@article{Hamborg2019-12Autom-44511,
  year={2019},
  doi={10.1007/s00799-018-0261-y},
  title={Automated identification of media bias in news articles : an interdisciplinary literature review},
  number={4},
  volume={20},
  issn={1432-5012},
  journal={International Journal on Digital Libraries},
  pages={391--415},
  author={Hamborg, Felix and Donnay, Karsten and Gipp, Bela}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44511">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43613"/>
    <dcterms:issued>2019-12</dcterms:issued>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44511/1/Hamborg_2-dovzzlr93tql8.pdf"/>
    <dc:language>eng</dc:language>
    <dcterms:title>Automated identification of media bias in news articles : an interdisciplinary literature review</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43613"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44511"/>
    <dc:contributor>Hamborg, Felix</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-10T12:55:03Z</dcterms:available>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:creator>Hamborg, Felix</dc:creator>
    <dc:creator>Gipp, Bela</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:creator>Donnay, Karsten</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:abstract xml:lang="eng">Media bias, i.e., slanted news coverage, can strongly impact the public perception of the reported topics. In the social sciences, research over the past decades has developed comprehensive models to describe media bias and effective, yet often manual and thus cumbersome, methods for analysis. In contrast, in computer science fast, automated, and scalable methods are available, but few approaches systematically analyze media bias. The models used to analyze media bias in computer science tend to be simpler compared to models established in the social sciences, and do not necessarily address the most pressing substantial questions, despite technically superior approaches. Computer science research on media bias thus stands to profit from a closer integration of models for the study of media bias developed in the social sciences with automated methods from computer science. This article first establishes a shared conceptual understanding by mapping the state of the art from the social sciences to a framework, which can be targeted by approaches from computer science. Next, we investigate different forms of media bias and review how each form is analyzed in the social sciences. For each form, we then discuss methods from computer science suitable to (semi-)automate the corresponding analysis. Our review suggests that suitable, automated methods from computer science, primarily in the realm of natural language processing, are already available for each of the discussed forms of media bias, opening multiple directions for promising further research in computer science in this area.</dcterms:abstract>
    <dc:contributor>Donnay, Karsten</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-10T12:55:03Z</dc:date>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44511/1/Hamborg_2-dovzzlr93tql8.pdf"/>
    <dc:contributor>Gipp, Bela</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen