Publikation:

Molecular Dynamics Simulations of Peptides at the Air-Water Interface : Influencing Factors on Peptide-Templated Mineralization.

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2014

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Langmuir. 2014, 30(51), pp. 15486-15495. ISSN 0743-7463. eISSN 1520-5827. Available under: doi: 10.1021/la503549q

Zusammenfassung

Biomineralization is the intricate, biomedically highly relevant process by which living organisms deposit minerals on biological matrices to stiffen tissues and build skeletal structures and shells. Rapaport and coworkers ( J. Am. Chem. Soc. 2000, 122, 12523; Adv. Funct. Mater. 2008, 18, 2889; Acta Biomater. 2012, 8, 2466) have designed a class of self-assembling amphiphilic peptides that are capable of forming hydrogels and attracting ions from the environment, generating structures akin to the extracellular matrix and promoting bone regeneration. The air–water interface serves both in experiment and in simulations as a model hydrophobic surface to mimic the cell’s organic–aqueous interface and to investigate the organization of the peptide matrix into ordered β-pleated monolayers and the subsequent onset of biomineral formation. To obtain insight into the underlying molecular mechanism, we have used molecular dynamics simulations to study the effect of peptide sequence on aggregate stability and ion–peptide interactions. We find—in excellent agreement with experimental observations—that the nature of the peptide termini (proline vs phenylalanine) affect the aggregate order, while the nature of the acidic side chains (aspartic vs glutamic acid) affect the aggregate’s stability in the presence of ions. These simulations provide valuable microscopic insight into the way ions and peptide templates mutually affect each other during the early stages of biomineralization preceding nucleation.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
540 Chemie

Schlagwörter

Molecular Dynamics Simulations

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690JAIN, Alok, Mara JOCHUM, Christine PETER, 2014. Molecular Dynamics Simulations of Peptides at the Air-Water Interface : Influencing Factors on Peptide-Templated Mineralization.. In: Langmuir. 2014, 30(51), pp. 15486-15495. ISSN 0743-7463. eISSN 1520-5827. Available under: doi: 10.1021/la503549q
BibTex
@article{Jain2014Molec-30334,
  year={2014},
  doi={10.1021/la503549q},
  title={Molecular Dynamics Simulations of Peptides at the Air-Water Interface : Influencing Factors on Peptide-Templated Mineralization.},
  number={51},
  volume={30},
  issn={0743-7463},
  journal={Langmuir},
  pages={15486--15495},
  author={Jain, Alok and Jochum, Mara and Peter, Christine}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30334">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dc:contributor>Peter, Christine</dc:contributor>
    <dc:contributor>Jain, Alok</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-17T10:48:19Z</dc:date>
    <dcterms:issued>2014</dcterms:issued>
    <dcterms:title>Molecular Dynamics Simulations of Peptides at the Air-Water Interface : Influencing Factors on Peptide-Templated Mineralization.</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-17T10:48:19Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dc:creator>Jochum, Mara</dc:creator>
    <dc:creator>Jain, Alok</dc:creator>
    <dc:creator>Peter, Christine</dc:creator>
    <dc:contributor>Jochum, Mara</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30334"/>
    <dcterms:abstract xml:lang="eng">Biomineralization is the intricate, biomedically highly relevant process by which living organisms deposit minerals on biological matrices to stiffen tissues and build skeletal structures and shells. Rapaport and coworkers ( J. Am. Chem. Soc. 2000, 122, 12523; Adv. Funct. Mater. 2008, 18, 2889; Acta Biomater. 2012, 8, 2466) have designed a class of self-assembling amphiphilic peptides that are capable of forming hydrogels and attracting ions from the environment, generating structures akin to the extracellular matrix and promoting bone regeneration. The air–water interface serves both in experiment and in simulations as a model hydrophobic surface to mimic the cell’s organic–aqueous interface and to investigate the organization of the peptide matrix into ordered β-pleated monolayers and the subsequent onset of biomineral formation. To obtain insight into the underlying molecular mechanism, we have used molecular dynamics simulations to study the effect of peptide sequence on aggregate stability and ion–peptide interactions. We find—in excellent agreement with experimental observations—that the nature of the peptide termini (proline vs phenylalanine) affect the aggregate order, while the nature of the acidic side chains (aspartic vs glutamic acid) affect the aggregate’s stability in the presence of ions. These simulations provide valuable microscopic insight into the way ions and peptide templates mutually affect each other during the early stages of biomineralization preceding nucleation.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen