Publikation: Molecular Dynamics Simulations of Peptides at the Air-Water Interface : Influencing Factors on Peptide-Templated Mineralization.
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Biomineralization is the intricate, biomedically highly relevant process by which living organisms deposit minerals on biological matrices to stiffen tissues and build skeletal structures and shells. Rapaport and coworkers ( J. Am. Chem. Soc. 2000, 122, 12523; Adv. Funct. Mater. 2008, 18, 2889; Acta Biomater. 2012, 8, 2466) have designed a class of self-assembling amphiphilic peptides that are capable of forming hydrogels and attracting ions from the environment, generating structures akin to the extracellular matrix and promoting bone regeneration. The air–water interface serves both in experiment and in simulations as a model hydrophobic surface to mimic the cell’s organic–aqueous interface and to investigate the organization of the peptide matrix into ordered β-pleated monolayers and the subsequent onset of biomineral formation. To obtain insight into the underlying molecular mechanism, we have used molecular dynamics simulations to study the effect of peptide sequence on aggregate stability and ion–peptide interactions. We find—in excellent agreement with experimental observations—that the nature of the peptide termini (proline vs phenylalanine) affect the aggregate order, while the nature of the acidic side chains (aspartic vs glutamic acid) affect the aggregate’s stability in the presence of ions. These simulations provide valuable microscopic insight into the way ions and peptide templates mutually affect each other during the early stages of biomineralization preceding nucleation.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
JAIN, Alok, Mara JOCHUM, Christine PETER, 2014. Molecular Dynamics Simulations of Peptides at the Air-Water Interface : Influencing Factors on Peptide-Templated Mineralization.. In: Langmuir. 2014, 30(51), pp. 15486-15495. ISSN 0743-7463. eISSN 1520-5827. Available under: doi: 10.1021/la503549qBibTex
@article{Jain2014Molec-30334, year={2014}, doi={10.1021/la503549q}, title={Molecular Dynamics Simulations of Peptides at the Air-Water Interface : Influencing Factors on Peptide-Templated Mineralization.}, number={51}, volume={30}, issn={0743-7463}, journal={Langmuir}, pages={15486--15495}, author={Jain, Alok and Jochum, Mara and Peter, Christine} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30334"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dc:contributor>Peter, Christine</dc:contributor> <dc:contributor>Jain, Alok</dc:contributor> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-17T10:48:19Z</dc:date> <dcterms:issued>2014</dcterms:issued> <dcterms:title>Molecular Dynamics Simulations of Peptides at the Air-Water Interface : Influencing Factors on Peptide-Templated Mineralization.</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-17T10:48:19Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dc:creator>Jochum, Mara</dc:creator> <dc:creator>Jain, Alok</dc:creator> <dc:creator>Peter, Christine</dc:creator> <dc:contributor>Jochum, Mara</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30334"/> <dcterms:abstract xml:lang="eng">Biomineralization is the intricate, biomedically highly relevant process by which living organisms deposit minerals on biological matrices to stiffen tissues and build skeletal structures and shells. Rapaport and coworkers ( J. Am. Chem. Soc. 2000, 122, 12523; Adv. Funct. Mater. 2008, 18, 2889; Acta Biomater. 2012, 8, 2466) have designed a class of self-assembling amphiphilic peptides that are capable of forming hydrogels and attracting ions from the environment, generating structures akin to the extracellular matrix and promoting bone regeneration. The air–water interface serves both in experiment and in simulations as a model hydrophobic surface to mimic the cell’s organic–aqueous interface and to investigate the organization of the peptide matrix into ordered β-pleated monolayers and the subsequent onset of biomineral formation. To obtain insight into the underlying molecular mechanism, we have used molecular dynamics simulations to study the effect of peptide sequence on aggregate stability and ion–peptide interactions. We find—in excellent agreement with experimental observations—that the nature of the peptide termini (proline vs phenylalanine) affect the aggregate order, while the nature of the acidic side chains (aspartic vs glutamic acid) affect the aggregate’s stability in the presence of ions. These simulations provide valuable microscopic insight into the way ions and peptide templates mutually affect each other during the early stages of biomineralization preceding nucleation.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>