Publikation:

CADTrack : Instructions and Support for Orientation Disambiguation of Near-Symmetrical Objects

Lade...
Vorschaubild

Dateien

Evangelista-Belo_2-eh00m08p3aix5.pdf
Evangelista-Belo_2-eh00m08p3aix5.pdfGröße: 2.24 MBDownloads: 49

Datum

2023

Autor:innen

Evangelista Belo, João Marcelo
Wissing, Jon
Grønbæk, Kaj

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Link zur Lizenz
oops

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Proceedings of the ACM on Human-Computer Interaction. ACM. 2023, 7(ISS), 426. eISSN 2573-0142. Available under: doi: 10.1145/3626462

Zusammenfassung

Determining the correct orientation of objects can be critical to succeed in tasks like assembly and quality assurance. In particular, near-symmetrical objects may require careful inspection of small visual features to disambiguate their orientation. We propose CADTrack, a digital assistant for providing instructions and support for tasks where the object orientation matters but may be hard to disambiguate with the naked eye. Additionally, we present a deep learning pipeline for tracking the orientation of near-symmetrical objects. In contrast to existing approaches, which require labeled datasets involving laborious data acquisition and annotation processes, CADTrack uses a digital model of the object to generate synthetic data and train a convolutional neural network. Furthermore, we extend the architecture of Mask R-CNN with a confidence prediction branch to avoid errors caused by misleading orientation guidance. We evaluate CADTrack in a user study, comparing our tracking-based instructions to other methods to confirm the benefits of our approach in terms of preference and required effort.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690EVANGELISTA BELO, João Marcelo, Jon WISSING, Tiare FEUCHTNER, Kaj GRØNBÆK, 2023. CADTrack : Instructions and Support for Orientation Disambiguation of Near-Symmetrical Objects. In: Proceedings of the ACM on Human-Computer Interaction. ACM. 2023, 7(ISS), 426. eISSN 2573-0142. Available under: doi: 10.1145/3626462
BibTex
@article{EvangelistaBelo2023CADTr-68083,
  year={2023},
  doi={10.1145/3626462},
  title={CADTrack : Instructions and Support for Orientation Disambiguation of Near-Symmetrical Objects},
  number={ISS},
  volume={7},
  journal={Proceedings of the ACM on Human-Computer Interaction},
  author={Evangelista Belo, João Marcelo and Wissing, Jon and Feuchtner, Tiare and Grønbæk, Kaj},
  note={Article Number: 426}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/68083">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/68083"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-11-08T08:57:49Z</dcterms:available>
    <dc:contributor>Wissing, Jon</dc:contributor>
    <dc:creator>Feuchtner, Tiare</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Grønbæk, Kaj</dc:contributor>
    <dc:creator>Grønbæk, Kaj</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-11-08T08:57:49Z</dc:date>
    <dc:contributor>Feuchtner, Tiare</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/68083/1/Evangelista-Belo_2-eh00m08p3aix5.pdf"/>
    <dcterms:issued>2023</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Evangelista Belo, João Marcelo</dc:creator>
    <dc:creator>Wissing, Jon</dc:creator>
    <dc:contributor>Evangelista Belo, João Marcelo</dc:contributor>
    <dcterms:title>CADTrack : Instructions and Support for Orientation Disambiguation of Near-Symmetrical Objects</dcterms:title>
    <dc:language>eng</dc:language>
    <dcterms:abstract>Determining the correct orientation of objects can be critical to succeed in tasks like assembly and quality assurance. In particular, near-symmetrical objects may require careful inspection of small visual features to disambiguate their orientation. We propose CADTrack, a digital assistant for providing instructions and support for tasks where the object orientation matters but may be hard to disambiguate with the naked eye. Additionally, we present a deep learning pipeline for tracking the orientation of near-symmetrical objects. In contrast to existing approaches, which require labeled datasets involving laborious data acquisition and annotation processes, CADTrack uses a digital model of the object to generate synthetic data and train a convolutional neural network. Furthermore, we extend the architecture of Mask R-CNN with a confidence prediction branch to avoid errors caused by misleading orientation guidance. We evaluate CADTrack in a user study, comparing our tracking-based instructions to other methods to confirm the benefits of our approach in terms of preference and required effort.</dcterms:abstract>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/68083/1/Evangelista-Belo_2-eh00m08p3aix5.pdf"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen