Dielectric rear side passivation on Ribbon Growth on Substrate (RGS) solar cells

Loading...
Thumbnail Image
Date
2010
Authors
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Contribution to a conference collection
Publication status
Published in
25th European Photovoltaic Solar Energy Conference and Exhibition. 5th World Conference on photovoltaic Energy Conversion / de Santi, G.F.; Ossenbrink, H.; Helm, P. (ed.). - München : WIP Renewable Energies, 2010. - pp. 2233-2236
Abstract
Ribbon Growth on Substrate (RGS) silicon wafers are cast directly from the melt onto reusable substrates. With a high production speed in the order of one wafer per second and the avoidance of material loss due to wire-sawing like in the block-casting technology, RGS is a cost-effective material. The wafers are multicrystalline with typical grain sizes between 0.1 mm to 1 mm. Up to now, the adapted solar cell process contained an open rear side metallization realized by an Al-grid [1]. This had to be implemented because of increased process induced shunting in cell areas with Al back side metallization. For rear side passivation and avoidance of possible shunting, two new cell back side designs are tested and compared to the RGS baseline process. In this work, silicon carbide as a dielectric passivation layer and its properties regarding a co-firing temperature step and the application of such a layer in the RGS solar cell process is investigated. It is found that a cell process for RGS containing a dielectric layer on the cell rear side in connection with Laser Fired Contacts (LFCs) enhances the cell performance by reducing the area of possibly contacted shunting paths further and thus increasing the parallel resistance of the solar cells. The gain in efficiency is hereby less attributed to the improved rear side passivation quality for this material with a limited diffusion length.
Summary in another language
Subject (DDC)
530 Physics
Keywords
Laser Processing,Ribbon Silicon,Silicon Carbide
Conference
25th European Photovoltaic Solar Energy Conference and Exhibition. 5th World Conference on photovoltaic Energy Conversion, Sep 6, 2010 - Sep 10, 2010, Valencia, Spain
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690HESS, Uwe, Sebastian JOOS, Johannes JUNGE, Sven SEREN, Giso HAHN, T. WEBER, P.-Y. PICHON, Axel SCHÖNECKER, 2010. Dielectric rear side passivation on Ribbon Growth on Substrate (RGS) solar cells. 25th European Photovoltaic Solar Energy Conference and Exhibition. 5th World Conference on photovoltaic Energy Conversion. Valencia, Spain, Sep 6, 2010 - Sep 10, 2010. In: DE SANTI, G.F., ed., H. OSSENBRINK, ed., P. HELM, ed.. 25th European Photovoltaic Solar Energy Conference and Exhibition. 5th World Conference on photovoltaic Energy Conversion. München:WIP Renewable Energies, pp. 2233-2236. Available under: doi: 10.4229/25thEUPVSEC2010-2CV.3.44
BibTex
@inproceedings{He2010Diele-16013,
  year={2010},
  doi={10.4229/25thEUPVSEC2010-2CV.3.44},
  title={Dielectric rear side passivation on Ribbon Growth on Substrate (RGS) solar cells},
  publisher={WIP Renewable Energies},
  address={München},
  booktitle={25th European Photovoltaic Solar Energy Conference and Exhibition. 5th World Conference on photovoltaic Energy Conversion},
  pages={2233--2236},
  editor={de Santi, G.F. and Ossenbrink, H. and Helm, P.},
  author={Heß, Uwe and Joos, Sebastian and Junge, Johannes and Seren, Sven and Hahn, Giso and Weber, T. and Pichon, P.-Y. and Schönecker, Axel}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/16013">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:creator>Joos, Sebastian</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-10-05T09:23:01Z</dc:date>
    <dc:creator>Junge, Johannes</dc:creator>
    <dcterms:title>Dielectric rear side passivation on Ribbon Growth on Substrate (RGS) solar cells</dcterms:title>
    <dc:contributor>Seren, Sven</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2010</dcterms:issued>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/16013/2/Hess_160137.pdf"/>
    <dc:creator>Hahn, Giso</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-10-05T09:23:01Z</dcterms:available>
    <dc:contributor>Hahn, Giso</dc:contributor>
    <dc:creator>Heß, Uwe</dc:creator>
    <dc:creator>Pichon, P.-Y.</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:abstract xml:lang="eng">Ribbon Growth on Substrate (RGS) silicon wafers are cast directly from the melt onto reusable substrates. With a high production speed in the order of one wafer per second and the avoidance of material loss due to wire-sawing like in the block-casting technology, RGS is a cost-effective material. The wafers are multicrystalline with typical grain sizes between 0.1 mm to 1 mm. Up to now, the adapted solar cell process contained an open rear side metallization realized by an Al-grid [1]. This had to be implemented because of increased process induced shunting in cell areas with Al back side metallization. For rear side passivation and avoidance of possible shunting, two new cell back side designs are tested and compared to the RGS baseline process. In this work, silicon carbide as a dielectric passivation layer and its properties regarding a co-firing temperature step and the application of such a layer in the RGS solar cell process is investigated. It is found that a cell process for RGS containing a dielectric layer on the cell rear side in connection with Laser Fired Contacts (LFCs) enhances the cell performance by reducing the area of possibly contacted shunting paths further and thus increasing the parallel resistance of the solar cells. The gain in efficiency is hereby less attributed to the improved rear side passivation quality for this material with a limited diffusion length.</dcterms:abstract>
    <dc:creator>Seren, Sven</dc:creator>
    <dc:contributor>Joos, Sebastian</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/16013/2/Hess_160137.pdf"/>
    <dc:contributor>Weber, T.</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:contributor>Heß, Uwe</dc:contributor>
    <dc:contributor>Schönecker, Axel</dc:contributor>
    <dc:contributor>Junge, Johannes</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/16013"/>
    <dc:creator>Schönecker, Axel</dc:creator>
    <dc:contributor>Pichon, P.-Y.</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Weber, T.</dc:creator>
    <dcterms:bibliographicCitation>Publ. in: 25th European Photovoltaic Solar Energy Conference and Exhibition. 5th World Conference on photovoltaic Energy Conversion : proceedings of the international conference held 6-10 September 2010, in Valencia, Spain / G.F. de Santi, H. Ossenbrink and P. Helm (eds.). Munich, Germany : WIP-Renewable Energies, 2010. pp. 2223-2226</dcterms:bibliographicCitation>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed